
Medical conditions can be diagnosed and studied using image data.
For instance, Figure 1 displays an example of a 3D Magnetic
Resonance Imaging (MRI) scan of a human brain. Standard medical
software can reconstruct a model of the brain surface stored as a
3D mesh, as depicted on the left-hand side of Figure 2. Additionally,
measurements of various quantities of interest are recorded on the
mesh. For instance, Blood Oxygenation Dependent Level (BOLD) is
used to infer the activity of brain cells. BOLD has an enormous
range of uses, from a diagnostic tool in the hospital or clinic, to
research into how the brain works, to investigating changes that
occur in disease.

Medical image acquisition and preprocessing often introduces noise
that contaminates the data. Recovering the underlying signal is crucial
for an accurate analysis. The objective is to estimate the BOLD signal
mapped onto the subject-specific cerebral cortex geometry, as
depicted on the right-hand side of Figure 2. However, achieving
reliable results requires novel methods that account for the intricate
geometry and complex surface of the human brain.

Motivation

Figure 1: An example of an MRI scan of a human brain. The image consists of a three-

dimensional array of voxels. Vertical cross-sections are shown from left to right.
Figure 2: Left: A typical mesh of a human brain that can be extracted from an MRI scan. Right: BOLD 
signal mapped on top of the brain mesh.
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Figure 4: Performance 
of PINNs against 
standard methods in 
the FDA literature. The 
boxplot shows the 
distribution of the 
Root-Mean-Squared 
Error (RMSE) between 
the true signal and the 
reconstructed signal 
for 50 simulations.
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Let 𝑥𝑖,𝑦𝑖,𝑧𝑖 for 𝑖 = 1,⋯ ,𝑁, denote 𝑁 locations on the mesh and let 𝑠𝑖 for 𝑖 = 1,⋯ ,𝑁 be the noisy data values at these locations. Functional
Data Analysis (FDA) assumes there is a continuous smooth function 𝑓 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 defined on the cerebral cortex geometry giving rise to the
data. That is 𝑠𝑖 = 𝑓 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 +𝜀𝑖 , where 𝜀𝑖represents the measurement error. Combining the following methods allows our model to recover
an accurate estimate of the underlying signal 𝑓 from the observed data:

1. Regression with a Partial Differential Equation Regularization [1] 2. Physics-Informed Neural Network (PINN) [2]

where

• 𝜆 controls the degree of smoothing

• ∇2𝑓 measures the curvature of 𝑓 with the Laplace-Beltrami operator.

A simulation of a real brain mesh was used to assess the method's performance. Figure 3's left-hand side displays an artificial signal
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= {𝑚𝑖𝑛,𝑚𝑎𝑥}(𝑟𝑖), mapped on top of the brain. In the center of

Figure 3, random noise 𝜖 ∼ 𝑁(0, 𝜎2) with 𝜎 = 0.5 is added to the signal. The right-hand side of Figure 3 presents the reconstructed signal
using our model (PINN). For the proposed method (PINN) and two existing methods fdaPDE [1] and the Heat Kernel (HK) [3], we measured the
Root-Mean-Square Error (RMSE) between the true and reconstructed signals. Figure 4 displays the distribution of the RMSE metric for 50
simulations. PINN performs on average at least 60% better than the existing approaches in the literature.

Figure 3: Simulations on a real human brain mesh. The brain surface is shown on the left with a 
simulated signal. Center: Random noise is added to the signal. The goal is to recover the left 
image from the center one. Right: Results of the reconstruction by out proposed method.
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