
EXPERIMENT 8

To Determine the Wavelength of Sodium Light using Newton’s
Rings

Please read additional instructions on the bench for setting up the
PC and camera for this experiment

Introduction
Newton’s rings are interference fringes of equal thickness which are produced in the air film be-
tween a convex surface and an optical flat. It is interesting to note that these interference fringes,
which demonstrate the wave nature of light, should be credited to Newton who was the chief pro-
ponent of the corpuscular theory.

The apparatus is set up as shown (Fig. 8.1). L is a convex lens placed on an optically flat plate
of glass P, forming an air film of varying thickness. Light from the sodium lamp S, strikes a sheet
of glass G, set at an angle such that the light is reflected downwards towards the lens and plate,
P. Some of the amplitude is reflected at the lower convex lens surface and some at the glass plate.
These two reflected rays travel upwards and enter the microscope and since they are coherent, they
interfere in a way which depends on the phase difference introduced by the air film. Since the air
film is symmetric about the point of contact, the fringes, which follow lines of equal thickness, will
be concentric rings with their centre at this point. They are called fringes of equal thickness. This
is an example of interference fringes produced by division of amplitude.

Background
Consider a ray of light incident on the airfilm at a point where its thickness is t. The optical path
difference between the two reflected rays will be 2t. Taking into account the phase change of π for
reflection at the rare to dense surface, the conditions for constructive and destructive intereference
are

2t =
(
m +

1

2

)
λ (constructive interference or bright rings)
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Figure 8.1: Apparatus for observing Newton’s rings

(8.1)
2t = mλ (destructive interference or dark rings)

where m is the order of the ring and can take the values m = 0, 1, 2, 3 . . ..

t

r

R R-t

Figure 8.2: Geometry of Newton’s rings arrangement

If R is the radius of curvature of the lens and r, the distance of the point under consideration to
the point of contact of the lens and glass plate (see Fig. 8.2) then

R2 = (R− t)2 + r2
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Figure 8.3: Measure the diameter of the central ring (Dc) and the positions of the rings on the left
hand (L1 to LM ) and right hand sides (R1 to RM ).

= R2 − 2tR + t2 + r2

2t =
r2

R
=

D2

4R
(8.2)

since t2 ¿ r2 and D = 2r diameter of a ring.
Combining this with the condition for, say the mth dark ring, Eq. 8.1, one gets for the diameter

of that ring:

D2
m = 4Rmλ (8.3)

hence λ can be determined.
This is the equation used to determine λ. The same equation would be obtained if the bright

rings had been taken.

Experimental Procedure

Measure the diameter of the central ring (DC) and the positions of the rings on the left hand (L1 to
LM ) and right hand sides (R1 to RM ) (Fig. 8.3).

The diameter of the mth ring is given by:

Dm = |Lm − L1|+ Dc + |Rm −R1|

Using Eq. 8.3, calculate the mean λ and the standard error on the mean.
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Table 8.1: Sample data table

Ring Number Lm | Lm - L1| Rm | Rm - R1| Dm

24
23
22
..
1

Spherometer
A spherometer is used to find R, the radius of curvature of the lens. The lens is a segment of a
sphere of radius R. The three legs of the spherometer form a equilateral triangle of side C and lie
on a circle of radius a (Fig. 8.3).

The zero of the spherometer is checked using the plane surface of the optical flat and the
spherometer is placed on the lens and h is found. The dashed horizontal line (Fig. 8.3) is a side
view of the circle on which the legs of the spherometer lie. Then by reasoning similar to that used
for Eq. 8.2.

2Rh = a2

=
c2

3
i.e. a =

c√
3

R =
c2

6h
(8.4)

Substitute for R into Eq. 8.3 and hence determine λ.

The Use of Interference Fringes to Test the Quality of Optical Components
The fringes of equal thickness observed in this experiment obviously correspond to contours of
the air film formed between the optical flat and the lens. The change in thickness of the air film
corresponding to the distance between adjacent fringes is λ

2
which is of the order of 0.3 microns.

To Check that the Lens Surface is Spherical
It has been assumed that the lens surface is spherical. This can be checked using Eq. 8.3. This
implies that if the lens surface is spherical

Dm
2 ∝ m
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Therefore imperfections of this order on the
surface of the lens or the optical flat will be
apparent since they will give rise to observ-
able distortions of the fringe system. The
fringe pattern shown would correspond to a
hill on the optical flat or the lens surface at
A of height λ

2 . This forms the basis of inter-
ferometers used to test the quality of optical
components.

A

The appropriate information is already available in Table 8.1. Plot Dm
2 versus m and using a

linear least squares fit, determine the slope and the error on the slope. Using your value for λ
calculate R and determine the error on R.

To Measure the Thickness of a Metal Foil

Interferometry can be used to accurately measure small distances or displacements. In the present
experiment the thickness of a thin metal foil is measured. The arrangement used is as shown in
Fig. 8.4. The metal foil is used as a spacer between the two optical flats to form a thin wedge
shaped film of air.

The glass plate G is positioned so that the light from the sodium lamp is reflected downwards
toward the air wedge. Some of the amplitude is reflected at the bottom surface of the first optical
flat and some at the top surface of the second optical flat. These two reflected beams travel upwards
and since they are coherent they will interfere depending on the path difference introduced by the
air film. Since the light of interest is incident normally on the air film, to a very good approximation
the fringes will follow lines of constant thickness which, in this case, are straight lines parallel to
the apex of the air wedge.

For simplicity the air wedge alone is drawn in Fig. 8.5. Consider a ray of light incident where
the thickness of the wedge is t. The optical path difference between the two reflected rays is 2t
since the refractive index of air is 1.00029 and can be put equal to 1. Taking into account the phase
change of π for reflection at the rare to dense surface this will be the position of the nth order dark
fringe if

2t = nλ (8.5)

The thickness t can be written in terms of the position of the fringe with respect to the apex of the
wedge, rn, and the angle of the wedge α.

t = αrn (8.6)
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Figure 8.4: Set-up to measure the thickness of a metal foil

Substituting this in Eq. 8.5
2αrn = nλ (8.7)

From this it follows that the distance between adjacent fringes, d, is

d =
λ

2α
(8.8)

Therefore the equation

α =
λ

2d

can be used to find the angle of the wedge since d can be measured. The thickness of the foil can
be found from the equation (see Fig. 8.4).

b = Lα =
Lλ

2d
(8.9)

In setting up the apparatus (see Fig. 8.4) the upper optical flat should rest on the polished edge
of the lower optical flat and the thin foil should be placed so that it is parallel to the apex of the
wedge as judged using the travelling microscope. The fringes as in Newton’s rings are localized
fringes and to observe them the microscope should be focussed on the air wedge. One crosswire
should be set perpendicular to the line of travel of the travelling microscope and if necessary the
two optical flats rotated as a unit so that the fringes are aligned with the crosswire. Starting near
the apex of the wedge the position of every fourth fringe is recorded and tabulated as in Table 8.2.

In Eqs. 8.6 and 8.9 it is assumed that the thickness of the wedge increases linearly with the
distance from the apex. This can be checked using column 3. A value of d can also be obtained as
indicated. The distance L (Fig. 8.4) should be measured a number of times and the best estimate
obtained.
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Rn

t

Figure 8.5: Geometry of the air wedge

Table 8.2: d = ( rm+4−rm

4
)±∆d

Fringe No. Position rm rm+4 − rm

0
4
8
12
16
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The value of λ used is that determined by Newton’s rings. This value will have a definite standard
error. The useful precision to which d and L should be determined depends on the precision of λ.
From Eq. 8.9 the fractional errors are related by

(
∆b

b

)2

=

(
∆λ

λ

)2

+

(
∆d

d

)2

+
(

∆L

L

)2

(8.10)

From this equation it is seen that the quantity with the largest fractional error will make the biggest
contribution to the fractional error in b. If a particular fractional error is less than 1

3
that of the

largest one it can be neglected since this will only make a 5% error in ∆b
b . To determine d or L

such that their fractional errors are smaller than 1
3

∆λ
λ is labour in vain. This should be kept

in mind when measuring d and L

To make a rough estimate of the separation of the Sodium D lines
You will notice that the quality of the fringes deteriorates as you move away from the apex of the
wedge, and that they soon disappear. The visibility, V, is a measure of the quality of the fringes
and is defined as

V =
Imax − Imin
Imax + Imin

(8.11)

where Imax is the intensity of a bright fringe and Imin the intensity of the adjacent dark fringes.
V = 0 corresponds to uniform intensity i.e. no fringes. When Imin = 0, V = 1 corresponding to
the sharpest fringes. The reason why the visibility of the fringes decreases as you move away from
the apex is that the yellow sodium line is not monochromatic but is a doublet i.e. it consists of two
lines with a small wavelength separation. Each line will produce its own set of interference fringes
and the eye will see the resultant intensity distribution. According to Eq. 8.7 the position of the
zero order fringe (n = 0) is independent of wavelength and is situated at the apex of the wedge.
The positions of the first order fringes will be at λ1

2α and λ2
2α where λ1 and λ2 are the wavelengths

of the lines in the doublet. The first order fringes are therefore separated by

λ1 − λ2

2α

The ratio of this separation to the distance between fringes (Eq. 8.8) is

(λ1 − λ2)/2α

λ̄/2α
=

λ1 − λ2

λ̄
where λ̄ =

λ1 + λ2

2

and can be very small, typically of the order of 10−3. λ̄ is the wavelength determined in the previous
experiment. The separation of the nth order fringes due to λ1 and λ2 will be

n(λ1 − λ2)

2α

It follows that near the apex of the wedge (i.e. small n) the fringes due to λ1 and λ2 will be more
or less in step and the visibility of the resultant fringe system will be ∼ 1 (Fig. 8.6a). As you move
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Figure 8.6: Visibility of the fringes due to the Na doublet lines

away from the apex of the wedge (i.e. as n increases) the fringes due to λ1 and λ2 will get more
and more out of step with a corresponding decrease in the visibility of the resultant fringe system
(Fig. 8.6b). As you move further out the fringes will eventually get out of step by half the distance
between fringes, at which stage the order of the fringe n′ is given by

n′(λ1 − λ2)

2α
=

1

2

λ̄

2α
(8.12)

and if the intensity of the two lines is the same, the fringes will combine to give uniform intensity
i.e. V = 0 (Fig. 8.6c). As you move further out the fringes should appear again and their visibility
increase until it again becomes equal to 1, when the separation between the fringe system due to
λ1 and λ2 is equal to the distance between fringes (Fig. 8.6d). and the order n′′ is given by

n′′(λ1 − λ2)

2α
=

λ̄

2α
(8.13)

In practice you will find that although the fringes reappear their visibility is considerably less that
what it was near the apex of the wedge. The reason for this will be explained in the next section.

Eqs. 8.12 and 8.13 can be written in terms of the distance from the apex of the wedge at which
these situations occur by replacing n′ and n′′ using Eq. 8.7.

Eq. 8.12 (λ1 − λ2) =
¯λ
2

4αrn
′
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Figure 8.7: Finite line width of spectral lines

Eq. 8.13 (λ1 − λ2) = λ̄
2

2αrn
′′

Only a rough estimate can be made of rn′ and rn′′ but these can be used to get a rough value for
λ1 − λ2.

Figure 8.8: Dependence of the visibility as a function of n for different line widths

Width of spectral lines

So far we have assumed that we were dealing with monochromatic light, that is light of a definite
wavelength. This is an idealization that cannot be achieved in practice. In practice all spectral lines
have a finite width which depends on the transition involved and on the conditions of excitation.
The energy distribution in a spectral line will typically be as shown in Fig. 8.7a.

8-10



Experiment8. To Determine the Wavelength of Sodium Light using Newton’s Rings

It was noted in the last section that when the fringes reappeared their visibility was much reduced
from what it was near the apex of the wedge. This is due to the finite width of the two lines of
the yellow sodium doublet (Fig. 8.7b). Consider one of those lines for simplicity. It contains a
small range of wavelengths. Each wavelength could be regarded as producing a set of interference
fringes and the eye will see the resultant intensity distribution. The zero order fringe corresponding
to all the wavelengths will coincide since its position is independent of wavelength (Eq. 8.7). For
small values of n the fringes systems will be in step for all practical purposes and the resultant
fringe system will have unit visibility. As n increases, the fringe systems, due to the different
wavelengths in the line, will get out of step with a corresponding decrease to zero. It follows from
Eq. 8.12 that the rate of change of the visibility with order dV

dn will depend on the width of the

spectral line, the smaller the width the smaller dV
dn as shown in Fig. 8.8.

Figure 8.9: Modified fringe pattern, taking finite line widths into account

It follows that the width of a spectral line could be investigated by determining how the visibility
of its fringes varies with n. The Michelson interferometer can be used for this purpose (see write-up
in this book).

Taking this effect into account Fig. 8.6 would have to be modified and in particular the modified
form of Fig. 8.6d would be as shown in Fig. 8.9 hence accounting qualitatively for what is observed.

Question

1) Why is a sodium lamp, rather than an incandescent or fluorescent lamp, used in the experiments?
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