MATH00030 Formula Sheet

Arithmetic and Algebra

Rules of Indices:

$$
\begin{aligned}
x^{m} \times x^{n} & =x^{m+n} . \\
\left(x^{m}\right)^{n} & =x^{m n} . \\
x^{m} \div x^{n} & =x^{m-n} . \\
x^{0} & =1 . \\
x^{1} & =x . \\
x^{-n} & =\frac{1}{x^{n}} . \\
(x \times y)^{n} & =x^{n} \times y^{n} . \\
\sqrt[n]{x} & =x^{\frac{1}{n}} .
\end{aligned}
$$

Rules of Logarithms:
Definition: $\log _{a} x$, is the number y such that $x=a^{y}$.

$$
\begin{gathered}
\log _{a}(x y)=\log _{a} x+\log _{a} y . \\
\log _{a}\left(x^{m}\right)=m \log _{a} x . \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y . \\
\log _{a} 1=0 . \\
\log _{a} a=1 . \\
\log _{a} x=\frac{\log _{b} x}{\log _{b} a} \\
a^{\log _{a} x}=x \\
\log _{a}\left(a^{x}\right)=x .
\end{gathered}
$$

The Binomial Theorem:

$$
\begin{gathered}
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i} . \\
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+y^{n} .
\end{gathered}
$$

Binomial Coefficients:

$$
\begin{gathered}
\binom{n}{i}=\frac{n!}{i!(n-i)!}=\frac{n(n-1)(n-2) \cdots(n-i+1)}{i!} . \\
\binom{n}{i}=\binom{n}{n-i} . \\
\binom{n+1}{i}=\binom{n}{i-1}+\binom{n}{i} .
\end{gathered}
$$

$\underline{\text { Lines and their Equations }}$

Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on a line, then the slope of the line is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
The equation of a line is $y=m x+c$, where m is the slope and c is the y-intercept.
The length of a line segment between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. The midpoint of the line seqment between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Quadratic Equations

The equation $a x^{2}+b x+c=0$ has solutions $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
The turning point of the graph of $y=a x^{2}+b x+c$ lies at $\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)$.

Trigonometry

Figure 3: Definition of Trigonometric Functions.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin (\theta)$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos (\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan (\theta)$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$*$

Table 1: Values of $\sin (\theta), \cos (\theta)$ and $\tan (\theta)$ for important values of θ.

$\sin (-\theta)=-\sin (\theta)$	$\cos (-\theta)=\cos (\theta)$
$\tan (-\theta)=-\tan (\theta)$	$\cot (-\theta)=-\cot (\theta)$
$\operatorname{cosec}(-\theta)=-\operatorname{cosec}(\theta)$	$\sec (-\theta)=\sec (\theta)$

Table 2: Parity Identities.

$\sin \left(\frac{\pi}{2}-\theta\right)=\cos (\theta)$	$\cos \left(\frac{\pi}{2}-\theta\right)=\sin (\theta)$
$\tan \left(\frac{\pi}{2}-\theta\right)=\cot (\theta)$	$\cot \left(\frac{\pi}{2}-\theta\right)=\tan (\theta)$
$\operatorname{cosec}\left(\frac{\pi}{2}-\theta\right)=\sec (\theta)$	$\sec \left(\frac{\pi}{2}-\theta\right)=\operatorname{cosec}(\theta)$

Table 3: Co-function Identities.

$\sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (B)$
$\cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B)$
$\tan (A \pm B)=\frac{\tan (A) \pm \tan (B)}{1 \mp \tan (A) \tan (B)}$

Table 4: Sum and Difference Formulae.

$$
\begin{array}{|l|}
\hline \sin ^{2}(\theta)=\frac{1-\cos (2 \theta)}{2} \\
\hline \cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2} \\
\hline \tan ^{2}(\theta)=\frac{1-\cos (2 \theta)}{1+\cos (2 \theta)} \\
\hline
\end{array}
$$

Table 5: Half Angle Formulae.
The Sine Rule: $\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$.
The Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos (A)$.

Differential Calculus

$f(x)$	$f^{\prime}(x)$	Comments
c	0	Here c is any real number
x^{n}	$n x^{n-1}$	
$e^{a x}$	$a e^{a x}$	
$\ln (a x)$	$\frac{1}{x}$	Here we must have $a x>0$
$\sin (a x)$	$a \cos (a x)$	
$\cos (a x)$	$-a \sin (a x)$	Note the change of sign

Table 6: Some Common Derivatives
Differentiation using first principles: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
The sum rule for differentiation: $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$.
The multiple rule for differentiation: $(c f)^{\prime}(x)=c f^{\prime}(x)$.

Integral Calculus

$f(x)$	$\int f(x) d x$	Comments
k	$k x+c$	Here k is any real number
x^{n}	$\frac{1}{n+1} x^{n+1}+c$	Here we must have $n \neq-1$
$\frac{1}{x}$	$\ln (x)+c$	Here we must have $x>0$
$e^{a x}$	$\frac{1}{a} e^{a x}+c$	
$\sin (a x)$	$-\frac{1}{a} \cos (a x)+c$	Note the change of sign
$\cos (a x)$	$\frac{1}{a} \sin (a x)+c$	

Table 7: Some Common Integrals
Evaluating definite integrals:
If F is an antiderivative of f then $\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)$.
The sum rule for integration: $\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
The multiple rule for integration: $\int_{a}^{b}(k f)(x) d x=k \int_{a}^{b} f(x) d x$.

Statistics

The mean is given by $\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.
Given a list numbers $x_{1}, x_{2}, \ldots, x_{n}$ in ascending order, then their median is defined to be $\frac{x_{\frac{n}{2}}+x_{\frac{n}{2}+1}}{2}$ if n is even and $x_{\frac{n+1}{2}}$ if n is odd.
The variance is given by $\operatorname{Var}(x)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$.
The standard deviation is given by $\sigma=\sqrt[n]{\operatorname{Var}(x)}$.
The line of best fit $y=m x+c$ is found using the formulae:

$$
m=\frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \text { and } c=\bar{y}-m \bar{x} .
$$

