ME Biomedical Engineering

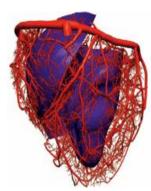
Madeleine Lowery

UCD School of Electrical and Electronic Engineering

Eoin O'Cearbhaill

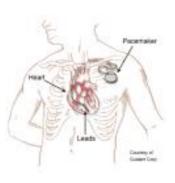
UCD School of Mechanical and Materials Engineering

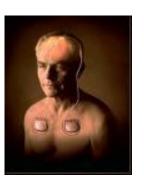
Biomedical Engineering


Biomedical Engineering

'The application of engineering principles to understand, modify or control biological systems'

- Wide variety of application areas
 - Medical device industry
 - Biosignal and bioimage processing
 - Rehabilitation engineering, orthopaedics...
- Foundation in Electrical/Electronic or Mechanical Engineering
 - Complemented with relevant physiology and anatomy
 - Brought together in specialised
 Biomedical Engineering modules

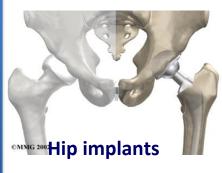




Cochlear implants

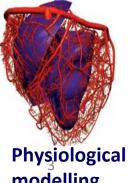
Pacemakers

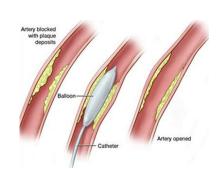
Deep brain stimulation

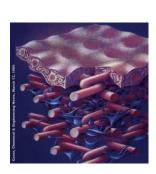

Gait analysis

Biomedical Engineering

The application of engineering principles to understand, modify or control biological systems


Rehabilitation robotics


Biomedical signal processing


MR imaging

modelling

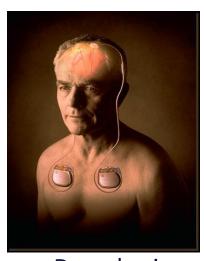
Angioplasty

Tissue engineering

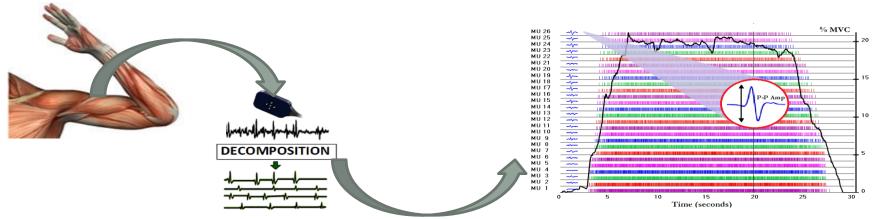
Applications of Neural Engineering

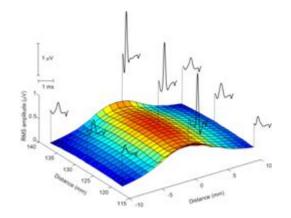
Rehabilitation Robotics

Cochlear implants


Prosthetics

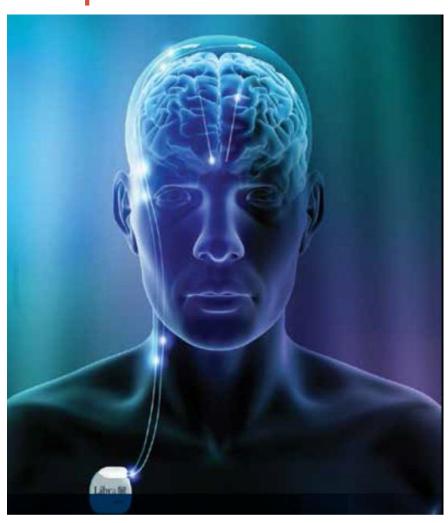
Brain Machine Interfaces

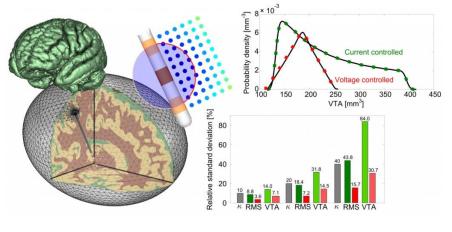

Neuromuscular Stimulation

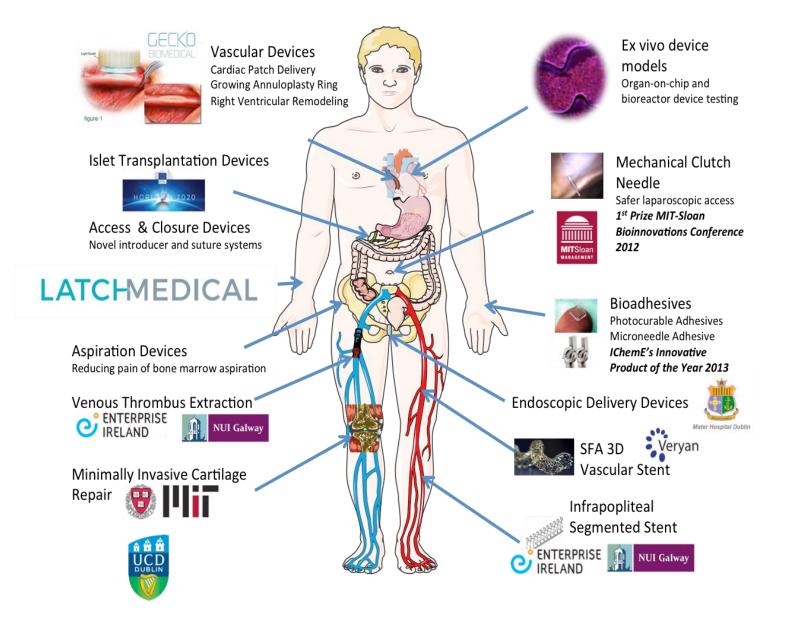


Deep brain stimulation

Sample research areas: Neural Control of Movement






Sample research areas: Deep Brain Stimulation

Sample research areas Medical Device Design (E O'Cearbhaill)

UCD Biomedical Engineering

Chemical Eng

Biotechnology for engineers

Cell and Tissue Eng

Electronic & Electrical Eng

Neural Eng

Medical Device Design

- Signal Processing Biosignal and Image
 Control theory
- **Analysis** Wireless systems

Biomechanics

- CommunicaBon systems
- Rehabilitation **Engineering**

Biomaterials

Computer engineerin

g

Medical Sciences for

Engineers

Biomedical Imaging

Medical Sciences

- Anatomy
- Physiology
- Neurophysiology
- Physiology of the cardiovascular system
- Exercise science

Mechanica I Eng

- Dynamics
- Fluid mechanics
- Materials science
- Mechanical Design
- Mechanics of solids

UCD Biomedical Engineering Taught Masters Degree

ME Biomedical Engineering

2 Year degree

120 Credit

GPA greater than 2.8 in Biomedical/Electronic/ Electrical or Mechanical Eng.

Accredited by Engineers Ireland

6-8 Month Professional Work Experience and 25 credit project

MI	E Biomedical Engineering Year 1						
IMI							
	Semester 1						
ANAT40010	Medical Sciences for Biomedical Engineers (unless already taken)						
MEEN40620	Biomechanics						
MEEN40630	Biomaterials						
MEEN40600	Medical Device Design						
	2 or 3 Modules From Below or Equivalent						
Engineering Modules							
EEEN30160	Biomedical Signal and Image Analysis						
EEEN30210	Biomedical Imaging						
EEEN30110	Signals and Systems						
EEEN40010	Control Theory						
EEEN40050	Wireless Systems						
EEEN40150	Radio Frequency Electronics						
MEEN30030	Mechanical Engineering Design II						
EEEN40030	Photonic Engineering						
MEEN40060	Fracture Mechanics						
MEEN40020	Mechanics of Fluids II						
MEEN40050	Computational Continuum Mechanics I						
MEEN40150	Computational Continuum Mechanics II						
EEEN40580	Optimisation Techniques for Engineers						
EEEN40300	Engineering Entrepreneurship						
Modules from outside Engineering							
COMP41670	Software Engineering						
PHYC40430	Nanomechanics - from single molecules to single cells						
PHYS30010	Physiology of the Cardiovascular System						
STAT30240	Linear Models I (Statistics)						
STAT40400	Monte Carlo Inference						

ME Biomedical Engineering Year 1

Semester 2: 30-Credit Professional Work Placement January - August

bio-medical research

UNILIFE

DUBLIN



Medtronic

'Also, just a note that we were blown away by the quality of the applications from UCD this year - it was very tough choosing between them at both interview and offer stages. The UCD students really stand out from the other candidates (and we had applicants from all over Ireland and around Europe).'

Shimmer Technologies

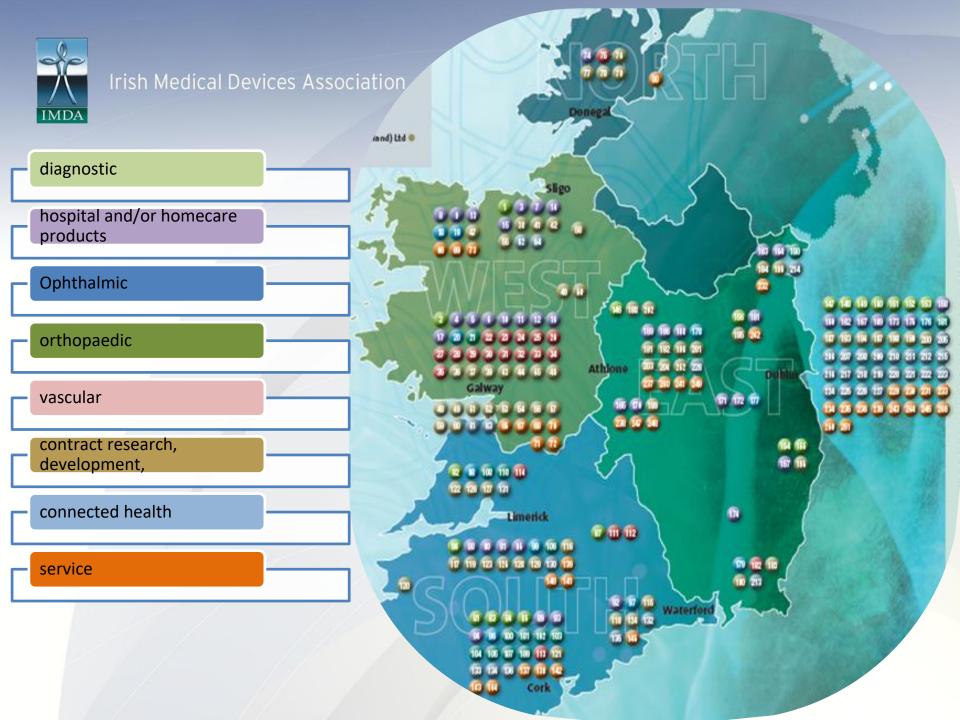
'It's rarely I feel the need to go into writing on feedback directly to Universities in relation to student placements we receive here in Boston Scientific, in fact this will be the first time. However, in the case of your Masters students who have just finished placements with us here in the past few weeks..., I feel the need to specifically highlight that these students were of a stand-out nature and not only developed considerably themselves during their placements, but contributed very well to our business – in fact to the extent that they will leave a vacuum behind them now that they have returned to college... As is the case with students of the standard, they are fast learners, very intelligent, constantly ask the right questions and always bring new perspectives. In addition to this, however, what really made these students stand-out for me was their level of enthusiasm, engagement, perseverance, thoroughness, ability to integrate within the team and their strong work ethic.'

Boston Scientific

ME	Biome	dical E	Engin	eering	Year 2

ME Didifiedical Eligified fing Teal 2						
Semester 1		Semester 2				
MEEN40610	Research Project / Thesis	MEEN40610	Research Project / Thesis			
MEEN40560	Research Skills and Techniques					
3 Modules From Below or Equivalent		3 Modules From Below or Equivalent				
Engineering Modules		MEEN41010	Biomechanics of Cells and Tissues			
EEEN30110	Signals and Systems	CHEN40470	Cell Culture and Tissue Engineering			
EEEN40010	Control Theory	EEEN40350	Rehabilitation Engineering			
EEEN40050	Wireless Systems	EEEN40070	Neural Engineering			
EEEN40150	Radio Frequency Electronics	EEEN 30180	Bioinstrumentation			
MEEN30030	Mechanical Engineering Design II	Engineering Modules				
EEEN40030	Photonic Engineering	MEEN40040	Materials Science and Engineering III			
MEEN40060	Fracture Mechanics	MEEN40180	Nanomaterials			
MEEN40020	Mechanics of Fluids II	MEEN30010	Applied Dynamics II			
MEEN40050	Computational Continuum Mechanics I	MEEN40070	Advanced Metals/Materials Processing			
MEEN40150	Computational Continuum Mechanics II	EEEN40060	Digital Communications			
MEEN40030	Manufacturing Engineering II	Modules from outside Engineering				
EEEN40580	Optimisation Techniques for Engineers	COMP40400	Bioinformatics			
EEEN40300	Engineering Entrepreneurship	RDGY30440	Image Analysis in Matlab			
Modules from outside Engineering		PHYS20030	Organ and Systems Physiology			
COMP41670	Software Engineering	PHYS20020	Neurophysiology			
NEUR30080	Neuromuscular and membrane biology					
PHYC40430	Nanomechanics - single molecules to single cells					
PHYS30010	Physiology of the Cardiovascular System					
STAT30240	Linear Models I (Statistics)					

Sample ME Projects 2017/2018


- Design of a rehabilitation aid to suppress hand tremor
- Analysis of the effect of compression garment on running gait
- Rugby Impact Biomechanics
- Does "putting on your game face" sharpen your selective sensory processing abilities?
- Chronic Ankle Instability
- Enabling ultra-low power IoT wearable sensors using data compression
- Determining the Mass and Inertial Properties of the Human Head
- Long-term monitoring of electromyography (EMG) using wearable sensors
- Investigating the effects of Stochastic Resonance Stimulation during Visuo-motor Adaptation Tasks
- Develop a 3D Printed PET-CT Phantom to Verify Registration and Segmentation Methods
- Effect of cobalt-aluminate face coat on grain size and microstructure of as-cast Co-Cr biomedical alloys for knee replacements
- Cortico-muscular coherence during mechanically-induced tremor
- Real-time Big Data Analysis using Machine learning/AI techniques for wearable health monitoring
- MicroNeedle
- Analysing the flow of bone cement in cannulated augmented fixation screws
- Integrated Interface using BCI (Brain Control Interfaces) for Independent Living
- Emotion Detection from Text Using Deep Learning Algorithms
- 3D printed soft robotic anatomical models
- Evaluation and redesign of a soft hand exoskeleton for rehabilitation
- Catheter-based Progressive Cavity Pump (PCP) for the delivery of highly viscous therapeutics
- The role of temporal integration in simple contrast decisions
- New neural indices of visual motion processing for brain-computer interface control
- 3D Printing of Soft Stretchable Sensors for Wearable Devices
- Evaluation of the Adhesive Performance of a Microneedle-based Tissue Adhesive
- Design of a dynamic braking system for a robot-assisted rehabilitation device

Ireland a global hub for Medtech Sector employs over 29,000 people. 18 of the world's top 25 medical technology companies have a base in Ireland.

http://www.ucd.ie/biomedicalengineering/

>> News & Events

Upcoming Events: >> Click here

Workshop: What is a real limb? Exploring boundaries between Art and Anatomy. **Published: 05 April 2016**

The UCU School of Medicine in conjunction with the National College of Art & Design host an interdisciplinary workshop entitled "What is a real limb? Exploring boundaries between Art and Anatomy". This frackathon' event will be taking place on Friday, 29th April 2016 at the National College of Art & Design. More details on the workshop itself and how to apply may be found here.

UCLWNCADIAD | Crestive Research Lunding Workshop

Published, 29 March 2016

Registration for the UCD/NCAD/IADT Creative Research Funding Workshop is now open. This halfday funding workshop is aimed at active academic researchers who are interested in exploring funding apportunities in creative disciplines (broadly defined), and who may be new to developing collaborative applications. Attendence is open to active academic staff from UCD, NCAD and IADT. The workshop will take place on April 20th and attendance is open to active academic staff from UCD, NCAD and IADT. Registration closes April 15th. More into on the workshop itself and how to register may be found here.

SSRA 2016: Call for Projects

Published: 30 November 2015

The SSRA 2016 Committee are now accepting project proposals from Principal Investigators for 8week supervised student projects during Summer 2016. The purpose of this scheme is to give

