

18/07/2013

Spatial mapping of future renewable energy potential in Flanders

Combining CA-based land use modelling and GIS Lien Poelmans^a, Guy Engelen^a, Pieter Lodewijks^b

^a VITO, Unit Ruimtelijke Milieuaspecten, Boeretang 200, 2400 Mol ^b VITO, Unit Transitie Energie en Milieu, Boeretang 200, 2400 Mol

European Directive on renewable energy

» 20% RE of the total gross energy consumption by 2020

- » Belgium: 13% (4.6% in 2009!)
 - » 20.9% RES-E (6% in 2009)
 - » 11.9% RES-H&C
 - » 10.1% RES-T (3.3% in 2009)

14

Share of renewable energy in gross final energy

consumption in Belgium and Flanders

Objectives

- » Develop geographically explicit projections of renewable energy in Flanders in 2020
- » Focus:
 - » Onshore wind energy: NREAP target of 4320 MW onshore/offshore wind energy (currently: ± 1750 MW installed capacity in Belgium)
 - » Solar energy (photovoltaic electricity): NREAP target of 1300 MW (currently: ± 1400 MW installed capacity in Flanders)

Objectives

- » Develop geographically explicit projections of renewable energy in Flanders in 2020
- » Focus:
 - » Onshore wind energy: NREAP target of 4320 MW onshore/offshore wind energy (currently: ± 1750 MW installed capacity in Belgium)
 - » Solar energy (photovoltaic electricity): NREAP target of 1300 MW (currently: ± 1400 MW installed capacity in Flanders)
- Develop SDSS by coupling a CA-based land-use model for Flanders with a GIS-based approach

Land-use change projections

 Constrained Cellular Automata model for Flanders (RuimteModel Vlaanderen)

Land-use change projections

- Constrained Cellular Automata model for Flanders (RuimteModel Vlaanderen)
- Implemented and calibrated to run simulations covering the period 2010 until 2020
- » Business-as-usual scenario
- Model output at the local level: land-use map for 2010-2020, showing the
 37 simulated land-use classes at a resolution of 1 ha

RuimteModel Vlaanderen BAU scenario 2010-2050

37 land-use categories

1 ha resolution

Runs 2010-2050

1 year time steps

Simulation in 30 min.

2005

RuimteModel Vlaanderen – BAU scenario

Land-use category	2010 (ha)	2020 (ha)	Difference (ha)	Daily difference (ha/day)
Residential	244.947	266.968	22.021	+6,0
Industrial/commercial	126.144	128.936	2.792	+0,8
Open space	929.892	905.174	-24.718	-6,8

- Urban expansion in the surroundings of already urbanised cells, both in highly urbanised regions (around city centres) and in more or less 'rurban' regions in Flanders
 - \rightarrow Highly dispersed RE production and consumption
 - \rightarrow Limited space for placing wind turbines

Land-use change projections

- Constrained Cellular Automata model for Flanders (RuimteModel Vlaanderen)
- Implemented and calibrated to run simulations covering the period 2010 until 2020
- » Business-as-usual scenario
- Model output at the local level: land-use map for 2010-2020, showing the
 37 simulated land-use classes at a resolution of 1 ha
- » 2 spatial indicators:
 - » Degree of urbanisation
 - Cluster size of the open space (natural, agricultural, recreational land use, water, parks)

Wind energy potential - Methodology

» Bottom-up approach

» 2 step procedure

Positive criteria

Positive criteria	Buffer distance	Output of RuimteModel (dynamic)
Industrial areas (zoning plans)	250m	
Industrial land uses	250m	x
Distance to roads	250m	
Distance to transmission lines	250m	
Distance to main canals	250m	
Degree of urbanisation > 50%		x

	2010	2020	Difference	
			2020-2010	. 15
	444484.1 ha	467344.8 ha	22860.7 ha	22
1	(±33%)	(±35%)	(+5.1%)	3

Estimating the wind energy potential

Allocate wind turbines inside suitable zones

GIS-based optimization procedure

Estimated potential for wind turbines

Residential land 2010 New residential land 2020 Industrial/commercial zones

- Suitable locations for wind turbines 2020
 - Major road network
 - Optimized Potential locations for wind turbines in 2020

Suitable locations for wind turbines 2010

© 2011, VITO NV

Solar energy potential - Methodology

» Top-down approach

1. Estimating the solar energy potential in Flanders

- » Environmental Costing Model
 - » Technical-economic Markal-based model
- » BAU-scenario vs. PRO-scenario 2020 for Flanders

2. Allocating the solar energy potential

» Dasymetric mapping technique based on the results of the land-use change model

Allocating the solar energy potential

Allocating the solar energy potential

Estimated capacity in 2020 (for Flanders)

Conclusions

- » Geographically-based potential for wind energy in Flanders: 3300MW by 2020
 - » Well above the target for wind energy put forward in the Belgian NREAP!
 - » However! Market conditions in the near future and the legal/administrative/political situation in Flanders will have the largest influence on the real market-technical potential for wind energy in the future
 - » Moreover, the methodology makes abstraction of the specific terrain conditions and the onshore wind resources → the indicated suitable zones might not be the most optimal locations regarding wind speed and wind intensity and thus power output

Conclusions

- » Total peak-capacity of installed PV in 2020: 2.4 GW
 - » Well above the 1.3 GW that was mentioned in the NREAP
 - » However! Highly dependent on changing policies related to the system of 'green certificates' (GCS) and the investment costs

Conclusions

- » Results have shown the applicability of a CA-based land-use change model for making estimates about future renewable energy production in a spatially-explicit and dynamic way
- » SDSS should incorporate land-use models in order to get a more complete/correct view of the future potential for renewable energy
- These coupled systems should help grid operators in their effort to develop energy- and cost-effective energy systems within a spatial context of expanding urban regions
- » Beyond this, the method supports a more integrated approach to spatial planning in that it can inform spatial planners about the unwanted effects of the diffuse urbanization patterns that are taking place in Flanders

