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Abstract

We analyze the timing and extent of northern European temper-
ature falls during the Little Ice Age, using standard temperature re-
constructions. However, we can find little evidence of long swings or
structural breaks in European weather before the twentieth century.
Instead, European weather between the fifteenth and nineteenth cen-
turies resembles uncorrelated draws from a distribution with a con-
stant mean (although there are decades of markedly lower summer
temperature); with the same behaviour holding more tentatively back
to the twelfth century. Our results suggest that the existing consen-
sus about a Little Ice Age in Europe may stem from a Slutsky effect,
where the standard climatological practice of smoothing data before
analysis gives the spurious appearance of irregular oscillations.

∗School of Economics, University College Dublin. This research was undertaken as part
of the HI-POD (Historical Patterns of Development and Underdevelopment: Origins and
Persistence of the Great Divergence) Project supported by the European Commission’s
7th Framework Programme for Research.
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A central pillar of popular scepticism about anthropogenic global warming
is the Little Ice Age: if temperatures over the last few centuries could fall
sufficiently for Swiss glaciers to advance, the Thames in London to freeze,
and the Norse colonies in Greenland to disappear, then surely the current
rise in temperatures is part of the same natural cyclicality? The goal of this
paper is to estimate the magnitude and timing of climatic deteriorations dur-
ing the Little Ice Age in Europe by using a variety of standard summer and
winter temperature reconstructions: for Central Europe since 1500 (Dobro-
volný et al., 2009); the Netherlands from 1301 (van Engelen, Buisman and
IJnsen, 2001); Switzerland from 1525 (Pfister, 1992); and England from 1660
(Manley, 1974).

The consensus among climatologists is that the Northern Hemisphere
above the tropics experienced sustained episodes of reduced temperatures
between the fifteenth and nineteenth centuries, with particularly marked falls
in Europe (Mann 2002, Matthews and Briffa 2005, Mann et al. 2009). How-
ever, we find little evidence of change points or temporal dependence in the
series we examine, contrary to the existing consensus of a Little Ice Age.

Starting with standard classical tests for change points in mean temperature—
Bai and Perron (1998) breakpoints and Venkatraman and Olshen (2007)
binary segmentation, which we show can detect changes of one standard de-
viation lasting a generation, and 0.5 standard deviations lasting a century—
we find that all winter series break around 1900, as does Central European
summer temperature. However, there is no indication of any shift in mean
temperature, apart from a brief fall in Switzerland during the 1810s, prior to
this. Using the Bayesian change point analysis of Barry and Hartigan (1993),
which has greater ability to detect short deviations, we find that while win-
ters before 1900 are stable, there are occasional decades of markedly reduced
summer temperature (the 1590s in Central Europe, the 1690s in England,
and the 1810s everywhere), but again no sustained falls in mean temperature
of the sort one would expect during a Little Ice Age.
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Looking at temporal dependence, we find no sign of trends in the data
before the twentieth century, and little evidence of first order autocorrela-
tion in summer temperature, although Central European and Swiss winters
display modest mean reversion, with autocorrelation coefficients of the order
−0.1 to −0.2.

The fact that European temperature series do not for the most part show
significant or large first order autocorrelation leaves open the possibility that
they may exhibit higher order or non-linear dependence. We therefore test
whether the data show conditional mean independence: given the past his-
tory of a stationary series {Yt} with expectation µ, the best forecast of its
current value is its unconditional mean: E (Yt|Yt−1, Yt−2, . . .) = µ.

There are three principal categories of tests: portmanteau tests that look
at the sum of autoregressive coefficients in the data; variance ratio tests that
look at how the variance of a series grows as the number of observations
rises; and spectral tests that look for departures from a straight line spec-
trum. We apply recent versions of each to temperature reconstructions, and
find few departures from conditional mean independence, with these driven
by pre-1700 observations. We find similar behaviour for English and Swiss
precipitation reconstructions. The weak correlation of annual Northern Eu-
ropean temperature series is in marked contrast to the strong autocorrelation
in the CRU Northern Hemisphere temperature series since 1850 which has
first order autocorrelation 0.6 and significant partial autocorrelations out to
lag four (McShane and Wyner, 2011), highlighting once again the importance
of spatial variation in climatic patterns.

Before the start of instrumental records around 1700, the reconstructions
used here are all based on documentary sources such as weather diaries and
ships logs for the sixteenth and seventeenth centuries; and harvest dates,
and records of when river tolls could not be collected because of drought or
freezing temperatures for earlier periods. (While tree rings might seem to be
a more obvious proxy, they are only reliable records of weather in cold or arid
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places where trees are under continual climatic stress, something that is not
the case in most of Europe). This raises an obvious question of how reliable
are these subjective reconstructions, particularly for earlier centuries. We
examine the validity of the Dutch reconstruction by seeing how it explains
extensive English records of wheat yields and prices from the thirteenth to
the fifteenth centuries, and find that it performs well, suggesting that it is a
reliable approximation to historical temperature conditions.

While our series, apart from Dutch temperature from 1301, are for weather
after 1500, we also have more tentative estimates of German weather back
to 1000 AD by Glaser and Riemann (2009) who assign seasons to three cat-
egories (good, average, or bad). We find that probabilities of a good or bad
summer or winter are relatively unchanged between the twelfth and nine-
teenth centuries, as are the probabilities of successive good or bad seasons.
Tests of conditional mean independence are problematic because they are not
designed for such multinomial data, but simulations show that the automatic
portmanteau test of Escanciano and Lobato (2009a) performs well. This test
does not reject conditional mean independence for winter weather between
AD 1000 and 1500, while showing weak dependence in summer weather.

To see if the volatility of annual temperatures rose during the Little Ice
Age we looked for change points in squared temperature series, but only
detect a change in one: the volatility of Central European summer tempera-
tures falls markedly in the 1720s, around the time that reliable instrumental
records start with Fahrenheit’s invention of the modern mercury thermome-
ter. We apply a variety of tests for generalized autoregressive conditional
heteroskedasticity (GARCH) but find that, with the exception of Central
European summers after 1728 which shows modest persistence in volatil-
ity, the variance of temperature appears constant. Looking at Intra-Class
Correlation (ICC) we find that variance between decades is small compared
with variance within decades: variance between decades typically accounts
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for roughly 4–10 per cent of total variance for winter temperature, and 1–2
per cent for summer temperature.

In summary, then, annual temperature reconstructions for northern Eu-
rope do not appear to exhibit temporal dependence or structural breaks
consistent with the occurrence of a Little Ice Age. Naturally, our results
have nothing to say about the occurrence of a Little Ice Age in other parts
of the Northern Hemisphere.

That our findings run counter to the existing consensus of a European
Little Ice Age may reflect the fact that our analysis is based on unsmoothed
data. This is in contrast to the current practice in climatology of smooting
data using a moving average or other filter prior to plotting it. When data
are uncorrelated, as annual European weather series appear to be, smoothing
can introduce the appearance of irregular oscillations: a Slutsky effect.1 The
intuition behind the Slutsky effect is straightforward: just as tossing a fair
coin leads to long sequences with an excess of heads or tails, so random
sequences in general will occasionally throw up some unusually high or low
values in close succession that will distort a smoothing filter.

The Slutsky effect is illustrated in Figure 1 which gives smoothed values of
500 standard normal variables, using moving averages of 10, 25, and 50; and

1As a referee observed, there are two different definitions of the Slutsky effect in common
use. First there is the formal sense, going back to Slutsky (1937), that applying a filter
to a random series will generate regular cycles corresponding to peaks in the transfer
function of the filter. For anm period moving average, for example, the transfer function is
f (ω) =

( 1
m2

)
(1− cos mω) / (1− cos ω) which, form = 25, has its largest peak, after zero,

around 17.5 years: too short, clearly, to generate Little Ice Age behaviour. The second
sense, that we use here, is the colloquial one that applying a moving average to a random
series will generate the appearance of irregular oscillations: this is the definition given,
for instance, at http://mathworld.wolfram.com/Slutzky-YuleEffect.html. In climatology,
Burroughs (2003, 24) briefly discusses the Slutsky effect, in the second sense, in an early
chapter on statistical background and gives a diagram illustrating how applying a moving
average to a series of random numbers will give the appearance of irregular cycles, but
does not subsequently investigate whether it can be the source of perceived climate cycles.
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Figure 1: Slutsky effect: 500 standard normal random numbers smoothed
with a 10 period moving average (grey line); 25 period moving average (blue
line); 50 period moving average (red line); and loess smoother with span of
one third (black line). The green line gives the posterior mean estimated by
a Barry-Hartigan change point procedure.

R’s loess filter with smoothing span of one third.2 It can be seen that notable
downward trends appear to occur around observation 100, and particularly
between observations 300 and 400, which is followed by a marked upward
trend. By contrast, the posterior mean estimated by a Barry and Hartigan
(1993) change point procedure, which we will see below is particularly useful
for detecting short changes in the mean value of series, shows no variation.

The Slutsky effect is illustrated in Figure 2 for Low Country summer
temperature since 1301. The top panel follows the standard climatological
practice of smoothing the data, in this case with a 25 year moving average.
These smoothed data appear to show a cooling trend from the mid-fifteenth
to the early nineteenth centuries, with markedly cold episodes in the late
sixteenth, late seventeenth, and early nineteenth centuries, consistent with a
Little Ice Age.

However, when we look instead at the unsmoothed data, in the middle
panel of Figure 2, the impression is one of randomness without structural

2The variables were generated in R with seed set to 123. The loess smoother behaved
almost identically to the Butterworth low pass filter with threshold of 0.025, except at the
boundaries where the latter showed characteristic attenuation towards zero.
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Figure 2: Low Countries summer temperature, 1301–2000. The top panel
shows annual temperature smoothed by a 25 year moving average; the mid-
dle panel shows the raw series; the bottom panel shows a boxplot of the
distribution of temperature by half century.

breaks, cycles or trends, something that we confirm formally below. The
bottom panel shows a boxplot of the distribution of temperature by half
century, which suggests that median summer temperature has fluctuated by
a fraction of a degree between 1301 and 2000.

Glaciers may be seen as a physical embodiment of a Slutsky effect: their
extent represents a moving average process of temperature and precipita-
tion over preceding years, and can show considerable variation through time
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even though the annual weather processes that drive them are independent
draws from a fixed distribution. For example, while annual Swiss winter
temperature and precipitation are close to random until the late nineteenth
century, Swiss glaciers fluctuate notably, expanding from the mid-fifteenth
century until 1650, contracting until 1750 and then expanding again until
1850 (Matthews and Briffa, 2005, 18–19).

By casting doubt on the occurrence of a Little Ice Age in Europe, our
findings further strengthen the case for anthropogenic global warming. The
global warming debate centres on whether observed rises in global temper-
atures over the last century are part of normal cyclical fluctuations in plan-
etary climate, or whether they represent the outcome of human activities.
By showing that, apart from some short, localized drops in summer temper-
ature, there was little marked change in European climate between the late
nineteenth century and at least the late middle ages, the rises in temperature
during the twentieth century become all the more anomalous.

The rest of the paper is as follows. The traditional view of the Little
Ice Age is outlined in Section 1, along with descriptions of the data sources
and a comparison of Dutch weather estimates with recorded English wheat
prices and yields from the thirteenth to the fifteenth centuries. Section 2
applies classical and Bayesian change point tests to the temperature recon-
structions, and finds little evidence of sustained changes before the twentieth
century, although there are decades of markedly lower summer temperature.
Section 3 looks for temporal dependence in annual temperature using tests of
conditional mean independence, while Section 4 looks at more conjectural re-
constructions of German weather back to AD 1000 and finds a similar pattern
of stability to the other series. Section 5 looks for breaks or autoregression
in the variance of temperature, while Section 6 finds that English and Swiss
precipitation behave similarly to temperature. Appendices look at instru-
mental records from European cities since 1700, and at the reconstruction of
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average temperature across all of Europe since 1500 by Luterbacher, Dietrich
and Wanner (2004).

1 The Little Ice Age.

Originally coined in 1939 by Matthes to describe the increased extent of
glaciers over the last 4,000 years, the term ‘Little Ice Age’ now usually refers
instead to a climatic shift towards colder weather occurring during the sec-
ond millennium. While most climatologists dismiss the idea of the Little
Ice Age as a global event, there is a consensus that much of the Northern
Hemisphere above the tropics experienced several centuries of reduced mean
summer temperatures, although there is some variation over dates with Mann
(2002) suggesting the period between the fifteenth and nineteenth centuries,
Matthews and Briffa (2005) 1570–1900, and Mann et al. (2009) between 1400
and 1700.

A combination of resonant images invoked by Lamb (1995) has linked
the Little Ice Age firmly to Northern Europe. These include the collapse of
Greenland’s Viking colony and the end of grape-growing in southern England
in the fourteenth century; the Dutch winter landscape paintings of Pieter
Bruegel (1525-69) and Hendrik Avercamp (1585-1634); the periodic ‘ice fairs’
on London’s Thames, ending in 1814; and, as the Little Ice Age waned, the
contraction of Europe’s Nordic and Alpine glaciers.

1.1 Data Sources.

In this paper we analyse weather reconstructions for Europe based on doc-
umentary sources. An immediate question is why more systematic proxies
such as tree rings cannot be used instead. There are two reasons. First, tree
rings only reflect annual weather conditions in cold or arid areas. Secondly,
McShane and Wyner (2011) demonstrate that currently used proxies such
as tree rings, lake sediments, and ice cores have low explanatory power for

9



recorded Northern Hemisphere temperature since 1850, and the fit of series
going back to AD 1000 is particularly weak.

Instead, the abundance of sources allows European temperatures to be
reconstructed from documentary sources for the period before instrumental
records around 1700. For the sixteenth and seventeenth centuries weather
diaries and ships logs exist in considerable numbers. For earlier centuries,
information about weather conditions is available from recorded harvest dates
for grains, hay, and grapes; and, in particular, records of river tolls and water
mills: how long each year were rivers unnavigable or mills unusable because
waterways were frozen in winter or dried up in summer: a useful survey
of these documentary sources is given by Brázdil, Pfister and Luterbacher
(2005).

The two pioneering documentary reconstructions of European weather
are Swiss temperature and precipitation from 1525 (Pfister, 1992); and the
Netherlands from 1301 (van Engelen, Buisman and IJnsen, 2001),3 and we
analyse both here. The current definitive reconstruction is the Central Eu-
rope reconstruction since 1500 by Dobrovolný et al. (2009), which includes
authors of most of the previous major European weather reconstructions, and
attempts to improve calibration of documentary records against instrumen-
tal records by trying to correct instrumental records for urban heat island
effects, and the impact of switching the location of thermometers from north-
facing walls to modern louvered boxes. The Central England series of Manley
(1974) is based entirely on instrumental records, albeit with some heroic data
splicing before 1700, and is added to look at weather in a more oceanic zone
of Europe.

3Although these series start in AD 800, there are increasing numbers of missing ob-
servations as we go back past 1301 and the authors are less confident of their accuracy,
putting them in wider bands that they denote by Roman rather than Arabic numerals. In
running times series tests, missing observations during the 14th and early 15th centuries
(30 for winter, 11 for summer) were set at the median value of the entire series.
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Figure 3: (a) Log English wheat price versus average Netherlands temper-
ature over previous two years, 1213–1500. (b) Wheat yield per seed versus
Netherlands summer temperature on 231 English manors, 1270–1450.

Documentary estimates of German temperature have been extended back
to 1000 AD by Glaser and Riemann (2009) who label years as good, average,
or bad. Because these data are multinomial we analyse them separately in
Section 4 below.

1.2 Reliability of Documentary Reconstructions.

How believable are these documentary reconstructions? With the exception
of the Dutch series, which provides detailed accounts (in Dutch) of its sources
, most studies give little detailed information on sources used and method-
ologies used to translate documentary records into temperatures. However
we can still validate these series by seeing how they correlate with records of
agricultural activity not used in their reconstruction.

The most detailed and extensive records of agricultural output in Europe
before the establishment of research stations at the end of the nineteenth
century, are the accounts kept by English manors between the thirteenth
and fifteenth centuries, which have been tabulated by Campbell (2007). The
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Intercept Summer Lag Summer Winter Lag Winter RMSE R2 N

Price 5.771∗∗ −0.050∗∗ −0.048∗∗ −0.003 −0.010 0.261 0.076 164
(0.454) (0.019) (0.020) (0.012) (0.012)

Yield 0.504∗∗ 0.046∗∗ 0.001 0.369 0.016 6037
(0.077) (0.005) (0.003)

Regression of annual English wheat prices and yields (both in logs) on current and lagged Dutch summer
and winter temperature. Standard errors in parentheses. ** denotes a coefficient significant at 1 per cent.

Table 1: Regression of annual English wheat prices (1211–1450) and yields
(1270–1450) on estimated Dutch temperatures.

left hand panel of Figure 3 plots Dutch summer temperatures against the
annual ratio of wheat harvested to wheat sown on 144 manors from the start
of accurate records in 1270 (the earliest accounts start in 1211 but some of
these early records claim anomalously high yields that are not reflected in low
wheat prices: including these records did not affect the results materially);
and end in 1450 by when this pattern of seigneurial agriculture carried out
by coerced labour had virtually disappeared. Points are jittered to separate
overlapping ones. It can be seen that yields move roughly in line with the
Dutch temperature estimates of van Engelen, Buisman and IJnsen (2001)
although explanatory power in Table 1 is low: a one degree rise in summer
temperature increases the average yield ratio by 5 per cent while winter
temperature has no impact. Estimating the regression with mixed effects to
allow intercept and slopes to vary across manors did not show large variation
across manors or change the reported estimates markedly. As a further test
of the validity of these results we looked at the impact of temperature on the
yields of barley and oats which are known to be more weather resistant than
wheat, and found that summer temperature had a smaller effect on barley
and none on oats.
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English medieval agriculture was highly commercialized, and price series
for wheat exist back to 1211 (Clark, 2004).4 Wheat could be stored for a
year after harvesting, so prices reflect the previous two years’ harvests: one
poor harvest had a limited impact, but successive harvest failures (such as
occurred during the Great Famine from 1316–17, when wheat prices rose
to nearly three times their average level—shown by the two points in the
northwest corner of the second panel of Figure 3) were lethal. We show
elsewhere (Kelly and Ó Gráda, 2010) that death rates at all levels, from
unfree tenants to the high nobility, rose sharply after poor harvests which
caused epidemic disease to spread across society.

We analyse wheat prices from 1211 until 1500: a period during which the
general price level was stable before the Price Revolution of the sixteenth
century. Regressing log price on current and lagged summer and winter
temperatures in Table1, it can be seen that a one degree rise in summer
temperature reduced prices by 5 per cent in the current and following year,
while, again as we say with yields, winter temperature has no discernible
impact. In summary then, the ability of the Dutch summer temperature
series to predict medieval English wheat yields and prices suggests that the
reconstruction is a reliable one.

2 Change Points in Temperature Since the
Middle Ages.

To examine how weather deteriorated during the Little Ice Age we analyze
several widely used annual summer and winter temperature reconstructions
up to 2000 for Western Europe: Central Europe from 1500; Low Countries
from 1301; Switzerland from 1525; and England from 1660.5 The Central

4We move Clark’s price series back by one year to align them with calendar years rather
than harvest years.

5We look at the Luterbacher, Dietrich and Wanner (2004) reconstruction of average
temperature across all of Europe since 1500 in the Appendix below.
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Netherlands: Summer
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Figure 4: Mean summer and winter temperature by half century with 95 per
cent credible intervals.

Europe series is expressed as a deviation in degrees from the 1961 to 1990
average; the Swiss series is measured on a continuous scale from plus to minus
three; while the Dutch and English series are expressed in degrees Celsius.
We subtract the mean of the Dutch and English series prior to analysis.

In this section we look at how stable mean temperatures have been over
time by applying classical and Bayesian change point analysis. However,
we start with a simple one-way ANOVA to examine winter and summer
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temperature by half-century for each series. Temperature in year i dur-
ing half-century j is assumed to be normally distributed yij ∼ N(αj, σ

2
w),

while mean temperature during half-century j αj ∼ N(µ, σ2
b ). To iden-

tify coefficients, we constrain the mean temperatures over half-centuries to
sum to zero Σjαj = 0, and impose standard non-informative priors: that
µ ∼ N(0, 10 000), σb ∼ U [0, 20], σw ∼ U [0, 20]. This was estimated by
MCMC in JAGS with 10 000 iterations, the first 2 500 being discarded.
Trace plots indicate rapid convergence on the posterior distribution, and
the Gelman-Rubin diagnostic supports convergence.

Figure 4 shows little variation in summer temperature with most obser-
vations lying within 0.25 degrees C of the series mean. For winter series and
Central European summers the rise around the late nineteenth century is
evident.

2.1 Classical Change Point Tests.

We now look at the stability of each series: can we find structural breaks in
mean temperature corresponding to different phases of climate? We look at
Bayesian tests below, but start with classical tests: the Bai and Perron (1998)
procedure, implemented by Zeileis et al. (2002), which uses least squares to
find the optimal location of k breakpoints, and then uses a Bayes Information
Criterion to choose among ks; and the Venkatraman and Olshen (2007) cir-
cular modification of Sen and Srivastava (1975) binary segmentation which
looks for the largest change in the partial sums of observations.6

For these tests to be informative, we must know their power: are they
capable of detecting shifts in mean temperature of the sort that would have
occurred during the Little Ice Age? We will examine the power of these

6The older CUSUM test Zeileis et al. (2002) performed poorly in simulations, only
detecting half as many breaks in short series as Bai-Perron, and we do not report its
results here. Because we are using seasonal averages, and only have annual data, the
Dierckx and Teugels (2010) test for changes in the parameter of the Pareto distribution
generating extreme values is not applicable.
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tests to find changes of means in series which are independent draws from a
normal distribution: we will see in Section 3 below that this assumption of
no temporal dependence in weather series appears valid.

In 1,000 simulations where 150 observations of mean zero are followed by
150 with a mean of 0.5, BP detected the break in 90 per cent of cases, and
VO in 64 per cent; while for 100 observations in each group the success rates
are 71 per cent and 43 per cent. By contrast, the Bayesian change point
analysis of Barry and Hartigan (1993) that we use below, while performs
better than classical tests in detecting short breaks, finds only around one
quarter of 0.5 standard deviation changes halfway through a series of length
200 or 300.7

Looking at a series of 150 observations where the middle 50 are 1 standard
deviation higher, BP detects 96 per cent and VO 95; for a rise of 0.75 the
percentages detected are 71 and 65; while for a rise of 0.5 the detection rates
were 28 and 22 per cent. For a rise in 33 observations in the middle of a series
of 100; for a one standard deviation increase BP detected 84 per cent of cases
and Segment 77; for a rise of 0.75 the rates are 52 and 40; while for a rise of
0.5 the detection rates are 21 and 13. In other words, binary segmentation
and BP can detect changes of 1 standard deviation in annual temperature
(roughly 1 degree Celsius for summer temperatures in Northern Europe) that
last a generation, and fairly reliably detect 0.5 standard deviation changes
that last a century.

Table 2 reports the change points detected in our four series of summer
and winter temperature using BP and VO. In all cases we find a break in
winter temperatures around the start of the twentieth century, but no indi-
cation of any change before that. For summer temperature, England and the
Netherlands show no change points. Central Europe shows a rise in the late

7For a change in the posterior mean to be detectable by eye, it requires a posterior
probability of a change point of at least 0.15, which, looking at the maximum posterior
probability for 10 observations on either side of the break, occurs in around 25 per cent of
simulations.
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Winter Summer
Start BP VO BP VO

C. Europe 1501 1909 1909 0 1982
Netherlands 1301 1861 1897 0 0
Switzerland 1525 1910 1911 0 1813, 1818
England 1660 1910 1911 0 0

Change points in mean winter and summer temperatures identified by
Bai-Perron breakpoints, and Venkatraman-Olshen binary segmentation.

Table 2: Change points in mean winter and summer temperatures.

twentieth century, while Switzerland records a shift between 1813 and 1818:
we return to this below.

In summary, classical change point tests suggest that if sustained falls in
temperature did occur in Europe during the Little Ice Age their magnitude
was below half a standard deviation.

If we use smoothed instead of raw data, the number of breakpoints pre-
dictably increases. For example, if data are smoothed with a loess smoother
with span of one third, Bai-Perron now identifies breaks in 1576, 1651, 1803
and 1926 in Central European summers; and 1527, 1632, and 1896 in Dutch
summers.

2.2 Bayesian Change Points.

The breakpoint and segmentation methods are known to perform well in
detecting long-lasting changes in series, but do less well at finding shorter
breaks. We therefore consider the Bayesian change point analysis of Barry
and Hartigan (1993) implemented through the MCMC approximation of Erd-
man and Emerson (2007). Figure 5 shows the estimated mean of each series
inside a 95 per cent credible interval, with the posterior probability of a
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Central Europe: Winter

−6

−4

−2

0

2

4

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●

●

1300 1400 1500 1600 1700 1800 1900 2000

Central Europe: Summer

−3

−2

−1

0

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1300 1400 1500 1600 1700 1800 1900 2000

0.0
0.2
0.4
0.6
0.8
1.0

1300 1400 1500 1600 1700 1800 1900 2000

0.0
0.2
0.4
0.6
0.8
1.0

1300 1400 1500 1600 1700 1800 1900 2000
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England: Winter
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Figure 5: Posterior mean and probability of breakpoint for Barry and Har-
tigan (1993) product partition model.

change point plotted below, all estimates being carried out using the default
values of Erdman and Emerson (2007).

It is evident that winter temperatures are stable until the twentieth cen-
tury when they rise markedly, particularly for England. For summers, the
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older reconstructions for Dutch and Swiss temperature show little variation
before the twentieth century, apart from a rise in the late eighteenth century
for the Netherlands, and a drop in the 1810s for Switzerland.

The English instrumental series and the Central European series, al-
though they do not show sustained changes before 1900, do show consider-
able volatility around their mean, with episodes of sustained falls in summer
temperature lasting around a decade. The most notable of these, that also
appears in many of the city series in Figure 7 below, occurs in the 1810s when
temperatures in England were below average every year between 1809 and
1817, and in Central Europe between 1812 and 1818. Similarly, temperatures
in Central Europe were below average every year from 1591 to 1598; and in
England from 1687 to 1698. While summer temperatures do not show the
prolonged changes that one would expect during a Little Ice Age, there are
decades of notably worse weather.

3 Conditional Mean Independence.

Looking now at temporal dependence in weather, Table 3 give the results of
a first order autoregression with trend yt = α + βyt−1 + γt for each weather
series. We shall see below that this specification is adequate: there is little
indication of higher order dependencies or non-linearities. Regressions where
the Bai and Perron (1998) procedure identifies a break-point are split at that
break, and the results given separately for each sub-sample.

For every series the regression R2 is below 0.05 and in most cases below
0.02. The size of autocorrelation is small in every case, and only a few series
show statistically significant autoregression at conventional levels. Central
European and Dutch summers show significant correlation but with a coef-
ficient of only 0.1: a one degree rise in temperature one summer increases
average temperature next summer by an almost imperceptible tenth of a de-
gree. The significance of the Dutch series is caused by reconstructions from
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Start Intercept Lag Temp. Trend RMSE R2

Summer
C. Europe 1501 −0.084 0.114∗ −0.001 1.071 0.017

(0.107) (0.049) (0.000)
1928 −0.756∗∗ 0.11 0.016∗∗ 0.797 0.258

(0.19) (0.104) (0.004)
Netherlands 1302 0.023 0.102∗∗ 0.000 0.904 0.011

(0.069) (0.038) (0.000)
Switzerland 1526 0.035 0.069 0.000 0.995 0.007

(0.093) (0.046) (0.000)
England 1661 −0.087 0.099 0.001 0.804 0.015

(0.088) (0.054) (0.000)
Winter

C. Europe 1501 −1.163∗∗ −0.111∗ 0.000 1.89 0.013
(0.195) (0.049) (0.001)

1910 −0.639 0.143 0.011 1.701 0.058
(0.377) (0.107) (0.007)

Netherlands 1302 −0.214 −0.055 0.000 1.647 0.003
(0.14) (0.042) (0.000)

1862 0.19 0.137 0.005 1.701 0.037
(0.295) (0.086) (0.004)

Switzerland 1526 −0.279∗ −0.145∗∗ −0.001∗ 1.136 0.029
(0.117) (0.051) (0.001)

1910 0.135 0.11 0.000 1.224 0.012
(0.286) (0.116) (0.006)

England 1661 −0.57∗∗ −0.053 0.002 1.344 0.015
(0.181) (0.066) (0.001)

1896 0.17 0.122 0.007 1.241 0.051
(0.25) (0.099) (0.004)

Regression of annual temperature on lagged temperature and a trend. Standard
errors in parentheses. ** denotes a coefficient significant at 1 per cent. All series
end in 2000, except Swiss which end in 1989. Start dates correspond to structural
breaks identified by a Bai-Perron (1998) procedure.

Table 3: Regression of annual temperature reconstructions on lagged tem-
perature and trend.

the fourteenth century, and disappears from the fifteenth century onwards;
while significance for the Central Europe series disappears after 1700. Sim-
ilarly, the small negative autocorrelation in the Central Europe and Swiss
winter series disappears when non-instrumental observations before 1700 are
excluded.
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While these temperature reconstructions do not, with some exceptions for
early periods, display first order autoregression, there remains the possibility
that the series show some other form of dependence, either higher order
linear or non-linear. To investigate this possibility we analyse our weather
series for what statisticians call conditional mean independence and financial
econometricians, who developed these tests to see if changes in asset prices
are unpredictable, call martingale differences.

Specifically, for a stationary series {Yt}, let It = {Yt, Yt−1, . . .} denote
the information set at time t. Under martingale differences E (Yt|It−1) = µ

or, equivalently, E [(Yt − µ)ω (It−1)] = 0 where ω () is a weighting function
(Escanciano and Lobato, 2009b).

For linear weights ω (It−1) = Yt−i, martingale differences imply zero co-
variances γi = E [(Yt − µ) (Yt−i − µ)] = 0 for i > 0 or, equivalently, corre-
lations ρi = γi/γ0 = 0. This leads to the standard Ljung-Box portmanteau
test based on the sum of the first p squared correlations TΣp

i=1ρ̃i
2 where

ρ̃i = ρi

√
(T + 2) / (T − i). We apply the modification of Escanciano and

Lobato (2009a) where correlations are divided by sample autocovariances of
the squared series to provide robustness against heteroskedasticity, and p is
chosen by a data dependent procedure where a penalty term is subtracted
that switches between Akaike and Bayes Information Criteria.

The other linear test we apply is a variance ratio test, based on the
idea of Lo and MacKinlay (1989) that, for uncorrelated series, estimated
variance should rise in proportion to the length of the series: AVR = 1 +
2Σp−1

i=1 (1− i/p) ρi. We apply the Kim (2009) modification where p is chosen
by a data dependent procedure, and the distribution of the test statistic is
derived by applying a wild bootstrap, where each term Yt of the original
series is multiplied by a random variable with zero mean and unit variance.

The third class of tests for temporal dependence in time series are tests
for the departure of the series spectrum from linearity. In econometrics
these originate with Durlauf (1991), and we report the generalized spectral
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Summer Winter
Q VR Spec. Q VR Spec

1701–1900
C. Europe 0.23 0.06 0.43 0.29 0.00 0.78
Netherlands 0.13 0.05 0.1 0.3 0.24 0.86
Switzerland 0.53 0.43 0.25 0.17 0.12 0.29
England 0.42 0.42 0.51 0.46 0.6 0.62

1701–2000
C. Europe 0.01 0.02 0.01 0.32 0.32 0.83
Netherlands 0.05 0.01 0.10 0.63 0.64 0.62
Switzerland 0.01 0.26 0.19 0.71 0.74 0.47
England 0.22 0.14 0.32 0.00 0.04 0.04

pre-1701
C. Europe 0.03 0.01 0.01 0.07 0.00 0.09
Netherlands 0.24 0.00 0.29 0.61 0.92 0.85
Switzerland 0.02 0.25 0.03 0.45 0.36 0.2
England 0.16 0.15 0.4 0.06 0.04 0.05

pre-1901
C. Europe 0.03 0.02 0.02 0.04 0.00 0.23
Netherlands 0.01 0.00 0.00 0.38 0.41 0.58
Switzerland 0.19 0.13 0.54 0.01 0.65 0.01
England 0.00 0.03 0.09 0.62 0.79 0.48

p values for tests of conditional independence of means of tem-
perature series until 2000. Q is a robustified portmanteau test
with automatic lag selection. VR gives the wild bootstrap test
results for an automatic variance ratio test. Spec is a general-
ized spectral test.

Table 4: Tests for conditional independence in means.

test of Escanciano and Velasco (2006), which corresponds to an exponential
weighting function ω.

Looking at the small sample properties of these tests for samples with
100, 300 and 500 observations, Charles, Darné and Kim (2011) find that the
reported size of all tests is approximately correct, and that against mod-
els of linear dependence the automated variance ratio test shows highest
power, while against a variety of non-linear processes, the generalized spec-
trum test works best. The temperature series here do not appear to exhibit
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non-linearity: applying a Terasvirta-Lin-Granger (1993) test for non-linearity
in means using Trapletti and Hornik (2010) led to p values in excess of 0.09
for all series, with values above 0.5 in most cases.

Table 4 reports the p values of these three tests for each temperature
series, calculated using the default values of Kim (2010). The first block
reports uses each series from 1701 to 1900; the second is for all years after
1701; the third has each series from its start (1500 for Central Europe, 1301
for the Netherlands, 1525 for Switzerland, and 1660 for England) until 1700;
while the final block gives results for the pre-1901 period.

It can be seen that for 1701–1900 (a period whose start lies in conven-
tional definitions of the Little Ice Age) the only test that rejects conditional
mean independence at conventional levels is the VR test for European win-
ters. This seems to result from excessive sensitivity of the VR test: this series
has a first order autoregressive coefficient of −0.06 with p-value of 0.36; and
if the residuals from this first order autoregression are tested, the VR test
returns a p-value of 0.82 (with the automatic portmanteau and generalised
spectrum giving similar values), indicating that the first-order specification
is adequate. Adding in twentieth century observations in the second block,
the only series to show systematic departures from conditional mean inde-
pendence are Central European summers and English winters, both of which
rise notably after 1900.

The excess sensitivity of the VR test also appears in the pre-1701 Central
Europe winter data: the coefficient of a first order autoregression is −0.14
with p-value of 0.05; and applying the VR test to residuals gives a p-value
of 0.97. For the summer data, the coefficient of a first order autoregression
is 0.12 with p-value of 0.09; and applying the VR test to residuals gives a
p-value of 0.82. We find the same thing with pre-1701 Dutch temperatures:
the coefficient of a first order autoregression is −0.04 with p-value of 0.38,
and applying the VR test to residuals gives a p-value of 0.87.
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4 German Temperatures over the Past Mil-
lennium.

Reconstructions of German temperature by Glaser and Riemann (2009) allow
us to extend our analysis, tentatively, back to 1000 AD. For years until 1500
Glaser and Riemann (2009) assign each season a minus one for bad, zero for
average, and one for good. After 1500, months are placed on an integer scale
from minus three to three. To splice the two series, we take January and July
values after 1500, and set all minus values to minus one, and all plus values
to one. Between 1101 and 1900 (the first century of observations contains a
lot of missing data), 40 per cent of winters are labelled bad, and thirty per
cent are good; while 30 per cent of summers are bad and 35 per cent good.

We start by looking at the proportion of good or bad years in each century.
We assume that yj ,the number of good (or, alternatively, bad) years in
century j, has binomial distribution yj ∼ bin(n = 100, pj) where the logit of
pj is normally distributed log (pj/1− pj) ∼ N(µ, σ2). We impose the priors
that µ ∼ N(0, 10 000), σ ∼ U [0, 20]. This was estimated by MCMC in JAGS
with 10 000 iterations, the first 2 500 being discarded, with the Gelman-Rubin
diagnostic indicating convergence.

We also looked at the probability of a good year, conditional on the
previous year being good; and of a bad year, conditional on the previous
year being bad; on the grounds that successive good years may have been
more common in the Medieval Warm Period, and successive bad ones in the
Little Ice Age.

Figure 6 plots these probabilities, with 95 per cent credible intervals, for
summers on the left and winters on the right. The eleventh and twentieth
centuries at either end stand out from the rest. The twentieth century has a
higher probability of good winters and successive good winters than earlier
centuries, consistent with global warming. At the other end, the eleventh
century has a lower probability of good or bad years, because years with
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Figure 6: Probabilities of good, bad, good following good, and bad following
bad summers and winters by century for Germany, 1001–2000 AD, with 95
per cent credible intervals.

missing values are assigned an average value by Glaser and Riemann (2009).
In between, the probability of good or bad winters appears fairly constant,
as does the probability that a bad winter will be followed by a bad one. The
probability of a good winter conditional on the previous winter being good
is also fairly constant, except for the seventeenth century which is nearly 20
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per cent higher than surrounding centuries despite being in the depth of the
Little Ice Age, although the credible intervals overlap.

For summers, the probability of a good summer, or successive good or
bad summers is fairly constant. However the probability of bad summers is
somewhat lower in the twelfth and thirteenth centuries, and higher in the
nineteenth; but the credible intervals again overlap with other centuries.

Next we consider conditional mean independence. An immediate prob-
lem is that the tests used earlier assume normal data, whereas these data
are multinomial. Carrying out Monte Carlo simulations on independent
sequences of length 400 where minus one, zero and one occur with equal
probability showed that two of the tests performed poorly. In over 99 per
cent of simulations the automatic variance ratio test returned a p-value of
0.74, and 0.37 in the remaining cases. Similarly, the generalized spectrum
test returned a p-value of 0.58 in 99 per cent of simulations, and 0.28 in
the remainder. However, the automated portmanteau test proved robust to
multinomial data, although the nominal p-values are slightly low. In 10 000
simulations, the first percentile was 0.003; the fifth was 0.035; and the tenth
was 0.085.

For Germany from 1101 to 1900, the p-value for winter is 0.26 and for
summer 0.00. From 1101 to 1500 the winter and summer values are 0.49 and
0.03 (these do not change substantially if the eleventh century is included);
while for 1501 to 1900 they are 0.46 and 0.02. These p-value are based on
applying the automated portmanteau test to 10 000 simulations of length 400
where minus one occurs with probability 0.4 and plus one with probability
0.3 for winter simulations; and minus one with probability 0.3; and plus one
with probability 0.35 for summer simulations. The data indicate conditional
mean independence in winter weather, and suggest some slight dependence
in summer weather.
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Summer Winter
Q1(5) Q1(10) Q3(10) Q6(20) HS Q1(5) Q1(10) Q3(10) Q6(20) HS

C. Europe 1.18 1.6 8.49 6.14 3.05 0.34 0.7 0.21 0.55 0.34
Netherlands 0.45 0.54 0.31 0.63 0.42 0.19 0.4 0.49 0.36 0.93
Switzerland 1 0.91 5.52 3.25 0.89 0.53 0.54 0.62 0.83 0.35
England 0.3 0.33 0.3 0.74 0.29 0.24 0.3 0.31 0.12 0.24

Each number is the value of the test statistic relative to its 5 per cent critical value. Q1(5) and Q1(10) are McLeod-Li
portmanteau tests truncated at 5 and 10 lags; Q3(10) and Q6(20) are ? volatility tests truncated at 10 and 20 lags,
and HS are Harvey and Streibel (1998) tests.

Table 5: Tests of conditional heteroskedasticity in summer and winter tem-
peratures.

5 Temperature Variance.

While there appears to be little sustained change in mean European tem-
peratures before the late nineteenth century, there is the possibility that
variance may have changed through time, so that earlier centuries may have
experienced greater volatility of temperatures.

Looking at the square of a series of normal variables with mean zero
where the variance standard deviation rises from 1 to 1.25 halfway through,
the Bai and Perron (1998) procedure detects a break 39 per cent of the time
for series of length 300, 36 per cent of the time for series of length 200, and
20 per cent of the time for series of length 100. Because the data are not
normal, the Venkatraman and Olshen (2007) binary segmentation procedure
detects fewer than 3 per cent of changes. Where the standard deviation rises
to 1.5, the respective success rates of Bai-Perron are 100, 87, and 54. In other
words, the break point procedure can fairly reliably detect a 50 per cent rise
in standard deviation in the middle of a series of length 200.

Applying breakpoints to the squared weather data, the only series to
show a break is Central European summers, in 1728, shortly after the start of
reliable instrumental records with Fahrenheit’s 1724 invention of the mercury
thermometer. Before this variance is 1.49, and falls to 0.80 afterwards.
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Tests for autoregressive heteroskedasticity look for temporal dependence
in squared residuals. The standard McLeod-Li test applies a Ljung-Box
test but has low power to detect weak autocorrelation and we therefore also
consider the Rodriguez and Ruiz (2005) Qi (M) = TΣM−i

k=1 (Σi
l=0ρ̃k+l)2and

Harvey and Streibel (1998) tests HS= T−1ΣT −1
i=1 ρii which Rodriguez and Ruiz

(2005) show to perform considerably better in detecting a variety of patterns
of dependence.

Table 5 reports the results of applying these tests to each temperature
series. The first two columns report McLeod-Li tests truncated at 5 and
10 lags; the next two give Rodriguez-Ruiz tests truncated at 10 and 20 lags
(with parameter i set to their recommended value of one third of the lag
minus one); and the final one the Harvey-Streibel statistic. Each statistic is
reported relative to its 5 per cent critical value, so values over one denote
values significant over 5 per cent. Changing the lags of the McLeod-Li and
Rodriguez-Ruiz tests did not alter the pattern of significance. Given the
break in many series in the late nineteenth century, each series is truncated
in 1900. We apply the tests directly to each squared series.

It can be seen that the only series showing systematically significant tem-
poral dependence in variance is Central European summers. If we split this
series in 1728, when we know that variance falls, the value of the Harvey-
Streibel statistic falls to 0.65 for earlier observations, but remains at 3.21
for later observations, with other statistics showing the same pattern of sig-
nificance. The Rodriguez-Ruiz statistic also detects dependence in Swiss
summers.

To estimate the parameters of the variance of Central European summers
between 1729 and 1900 we assume a GARCH(1,1) process where the devia-
tion of temperature from its mean yt = εt where εt has t distribution with ν
degrees of freedom, and variance σ2

t that follows σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1.
We estimated this using the BayesGARCH package of Ardia and Hooger-
heide (2010), using the package’s default diffuse priors. Convergence to the
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Summer Winter
ICC σw σb ICC σw σb

C. Europe 0.009 1.911 0.148 0.038 1.07 0.198
[0,0.036] [1.779,2.048] [0.014,0.365] [0.001,0.102] [0.991,1.152] [0.03,0.355]

Netherlands 0.018 1.639 0.191 0.037 0.895 0.164
[0,0.064] [1.551,1.738] [0.018,0.419] [0.001,0.094] [0.846,0.951] [0.032,0.283]

Switzerland 0.007 1.136 0.074 0.056 0.964 0.224
[0,0.042] [1.056,1.22] [0.006,0.237] [0.006,0.138] [0.9,1.035] [0.078,0.383]

England 0.025 1.352 0.184 0.083 0.773 0.225
[0,0.099] [1.239,1.477] [0.012,0.446] [0.018,0.207] [0.706,0.849] [0.108,0.388]

Intraclass correlation, between decade standard deviation, and within decade standard deviation of annual tempera-
ture series. 95 per cent credible intervals in brackets.

Table 6: Within and between decade standard deviation of annual tempera-
ture series before 1900.

posterior was slow for ν, and we used a burn-in of 25 000 iterations, followed
by 75 000 iterations. The estimates were α0 = 0.396, with 95 per cent cred-
ible interval [0.095, 0.787], α1 = 0.147 [0.017, 0.357], β = 0.408 [0.021, 0.805]
suggesting modest persistence in volatility, although it must be remembered
that the series is only a fraction of the thousand observations usually felt to
be the minimum for reliable inference of GARCH parameters.

Given that variance appears fairly constant for most series, it is worth-
while to compare the variance of temperature between periods with the vari-
ance within periods. We use the same specification, priors, and number of
iterations for annual temperature as in Figure 4, but use decades rather than
half-centuries as our period of analysis (the results are almost identical if we
use half-centuries), and end each series in 1900.

Table 6 reports the estimated standard deviation within decades σw and
between decades σb, and also the intra-class correlation: the percentage of
the variance of the series accounted for by between-class variance: ICC≡
σ2

b/ (σ2
b + σ2

w). It can be seen that the standard deviation of temperature
between decades is low: of the order of one quarter of a degree Celsius.
Similarly, the intra-class correlation is low, with between-decade variance
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Start ρ SE(ρ) ICC Q VR Spec

Switzerland
Summer 1525 0.127 0.059 0.056 0.04 0.01 0.05

1812 0.000 0.076 0.045 1.00 0.75 0.26
Winter 1525 −0.006 0.052 0.002 0.92 0.87 0.07

1899 0.051 0.105 0.095 0.63 0.10 0.12
England

Summer 1766 0.093 0.092 0.042 0.29 0.07 0.45
1883 −0.018 0.096 0.038 0.85 0.72 0.78

Winter 1766 0.043 0.103 0.11 0.66 0.10 0.74
1864 −0.061 0.09 0.034 0.45 0.88 0.66

Summary statistics for precipitation. ρ is first order autoregressive co-
efficient, and SE(ρ) its associated standard error. ICC is the intra-class
correlation between decades. Q is the p value of a robustified portman-
teau test with automatic lag selection. VR gives the wild bootstrap
test results for an automatic variance ratio test. Spec is a generalized
spectral test.

Table 7: Temporal dependence in annual precipitation in Switzerland and
England.

accounting for one to three per cent of variance for summer temperature,
and four to eight per cent for winter.

6 Precipitation.

While our focus has been on temperature, we also have precipitation esti-
mates for Switzerland from 1525, and from England from 1760. Using a Bai
and Perron (1998) procedure to detect breaks, English summer precipitation
falls from an average of 450 mm before 1883 to 410 mm after, while mean
winter precipitation rises from 450mm to 500 mm after 1864. For Switzer-
land, where precipitation is measured on a scale from 3 (very wet) to −3
(very dry), mean summer precipitation falls from 0.22 to −0.07 after 1812,
while winter precipitation rises from −0.24 to 0.25 after 1899.

Table 7 shows the first order autocorrelation and standard error for each
series. It can be seen that only Swiss summer precipitation before 1812
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shows autocorrelation significant at 5 per cent, but the magnitude, 0.13, is
small. The third column shows intra-class correlation over decades (where
each series is rounded to the nearest 10 years) which ranges from 3 to 10 per
cent. The last three columns report the tests for conditional independence
in means described earlier. It can be seen that, with the exception of Swiss
summer precipitation, no series gives evidence of temporal dependence.

7 Conclusions.

Our intention was to estimate the extent and timing of climate changes during
the Little Ice Age. To our surprise, standard documentary reconstructions
give little indication of sustained structural breaks in weather series before
the late nineteenth century, although there are occasional decades of notably
poor summer weather. If Europe experienced a Little Ice Age, the weather
reconstructions analyzed suggest that temperature falls were of the order of
less than half of one standard deviation.

Our findings are a reminder that some of the changes claimed by Lamb
(1995) to be consequences of the Little Ice Age may have other possible
causes. The freezing of the Thames—which for most people is the most
salient fact about the Little Ice Age—was due to Old London Bridge which
effectively acted as a dam, creating a large pool of still water which froze
twelve times between 1660 and 1815. Tidal stretches of the river have not
frozen since the bridge was replaced in 1831, even during 1963 which is the
third coldest winter (after 1684 and 1740) in the Central England tempera-
ture series that starts in 1660.

For Greenland’s Vikings, competition for resources with the indigenous
Inuit, the decline of Norwegian trade in the face of an increasingly power-
ful German Hanseatic League, the greater availability of African ivory as a
cheaper substitute for walrus ivory, overgrazing, plague, and marauding pi-
rates probably all played some role in its demise (Brown, 2000); and even if
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weather did worsen, the more fundamental question remains of why Green-
land society failed to adapt (McGovern, 1981). The disappearance of Eng-
land’s few vineyards is associated with increasing wine imports after Bor-
deaux passed to the English crown in 1152, suggesting that comparative
advantage may have played a larger role than climate.

Similarly, the decline of wheat and rye cultivation in Norway from the
thirteenth century may owe more to lower German cereal prices than tem-
perature change (Miskimin, 1975, 59). Moreover, with worsening climate we
would expect wheat yields to fall relative to the more weather-robust spring
grains barley and oats whereas Apostolides et al. (2008, Tables 1A, 1B) find
that between the early fifteenth and late seventeenth century, wheat yields
show no trend relative to oats, and rise steadily relative to barley.

Finally, demography supports our reservations about a European Little
Ice Age. We would expect northern Europe to have shown weak population
growth as the Little Ice Age forced back the margin of cultivation. In fact,
while the population of Europe in 1820 was roughly 2.4 times what it had
been in 1500, in Norway the population was about 3.2 times as large, in
Switzerland 3.5 times, in Finland 3.9 times, and in Sweden 4.7 times as large
as in 1500 (Maddison, 2009).

In summary, this paper makes two points: one methodological, one his-
torical. First, smoothing random or near random data is problematic, but
the most reliable and informative results, both in terms of avoiding spurious
oscillations and detecting real breaks, are given by the Barry and Hartigan
(1993) procedure. Secondly, although most of us have strong priors that Eu-
rope experienced bouts of markedly worse weather during the Little Ice Age,
such episodes are not apparent in standard temperature reconstructions.
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Berlin: Winter
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Budapest: Winter
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Budapest: Summer

−3

−2

−1

0

1

2

3

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

1700 1750 1800 1850 1900 1950

Copenhagen: Winter
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Copenhagen: Summer
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De Bilt: Winter
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De Bilt: Summer
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Edinburgh: Winter

−6

−4

−2

0

2

4

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

1700 1750 1800 1850 1900 1950

Edinburgh: Summer
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Geneva: Winter
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Geneva: Summer
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Munich: Winter

−6

−4

−2

0

2

4

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

1700 1750 1800 1850 1900 1950

Munich: Summer
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Paris: Winter
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Paris: Summer
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Stockholm: Winter
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Stockholm: Summer
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Trondheim: Winter
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Trondheim: Summer
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Vienna: Winter
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Vienna: Summer
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Figure 7: Posterior mean of city summer and winter temperatures since 1700.

Appendix: European Cities since 1700.

Looking a documentary reconstructions of European temperature we have
found a common pattern of considerable short run instability in summer
temperature but little indication of larger structural breaks or temporal de-
pendence before the late nineteenth century. To validate these results we can
compare them with instrumental records from European cities, that begin
shortly after 1700 and end in 1980.8

Figure 7 plots winter and summer temperature along with Barry-Hartigan
estimates of means for each city. It can be seen that winter temperatures

8European cities summer and winter temperatures are averages of June to August,
and December to January temperatures from the jonesnh.dat file in “An Updated
Global Grid Point Surface Air Temperature Anomaly Data Set: 1851-1990” available
at http://cdiac.ornl.gov/ftp/ndp020/.
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Figure 8: Barry-Hartigan posterior means for Luterbacher et al (2004) re-
constructions of European summer and winter temperature.

are stable or slightly upward trending, with a small but notable dip in many
places during the 1940s. Summer temperatures are a good deal more volatile.
Some of the larger breaks, such as De Bilt (Netherlands) between 1850 and
1950, and Paris during the 1930s and 1940s do not appear in nearby cities
and appear to be the results of changes in recording methodology; but there
are common falls such as the 1810s in Berlin, Munich, Budapest and Geneva,
and the 1910s in much of central Europe.

Appendix: European Average Temperature Es-
timates of Luterbacher, Dietrich and Wanner
(2004).

Plots of city temperatures emphasize the extreme spatial variability of weather
across northern and central Europe. An attempt to construct an average an-
nual temperature series for all of Europe was carried out by Luterbacher,
Dietrich and Wanner (2004), using instrumental data after 1659; and the
estimates analysed earlier, or earlier estimates by the same authors, along
with tree ring and ice core data for earlier centuries. These estimates are
plotted with Barry-Hartigan posterior means in Figure 8. It is immediately
evident that the annual variation is considerably lower than in the series for
individual places analysed earlier. Winter shows the same pattern of stabil-
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ity, but there is a large rise in temperature in the late eighteenth century
that does not appear in any other of the European reconstructions but can
be seen in some of the city records. Another marked difference is the marked
autocorrelation of the summer reconstructions: the first order autoregression
coefficient for temperatures before 1900 is only −0.05 for winter with p-value
of 0.25, but 0.23 for summer, significant at 1 per cent.

Appendix: Data Sources.

• Central European temperature reconstructions from 1500 by Dobro-
volný et al. (2009) are available at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/historical/-
europe/dobrovolny2010temperature.xls

• The Low Countries temperature series of van Engelen, Buisman and
IJnsen (2001) are available at www.knmi.nl/kd/metadata/nederland_wi_zo.html.

• Swiss summer and winter temperature and precipitation from Pfister
(1992) are available at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/historical/switzerland/-
clinddef.txt

• Monthly mean Central England temperature from 1659 are from http://hadobs.-
metoffice.com/hadcet/cetml1659on.dat, and the monthly England and
Wales precipitation series from 1766 are from http://hadobs.metoffice.com/hadukp/-
data/monthly/HadEWP_monthly_qc.txt.

• German temperature reconstructions from 1000 AD by Glaser and Rie-
mann (2009) are available at ftp://ftp.ncdc.noaa.gov/pub/data/paleo/historical/europe/-
glaser2009temperature/glaser2009temperature.xls
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