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Abstract

This paper develops a dynamic approximate factor model in which returns are time-series

heteroskedastic. The heteroskedasticity has three components: a factor-related component, a

common asset-specific component, and a purely asset-specific component. We develop a new

multivariate GARCH model for the factor-related component. We develop a univariate sto-

chastic volatility model linked to a cross-sectional series of individual GARCH models for the

common asset-specific component and the purely asset-specific component. We apply the analy-

sis to monthly US equity returns for the period January 1926 to December 2000. We find that

all three components contribute to the heteroskedasticity of individual equity returns. Factor

volatility and the common component in asset-specific volatility have long-term secular trends

as well as short-term autocorrelation. Factor volatility has correlation with interest rates and

the business cycle.
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1 Introduction

In the approximate factor model of asset returns developed by Chamberlain and Rothschild (1983),

the random return on each of n assets is a linear combination of k common factors plus an asset-

specific random return, where n is large and k is small. The asset-specific returns are only weakly

correlated, in the sense that the largest eigenvalue of the covariance matrix of asset-specific returns

is bounded above for all n. This implies that the risk in portfolios with holdings spread thinly

over many assets comes only from the common factor returns, not from the asset-specific returns.

The factor returns capture nondiversifiable risks, which arise from economy-wide shocks, whereas

the asset-specific returns capture diversifiable risks, which arise from the idiosyncratic movements of

individual security prices.

Connor and Korajczyk (1986, 1988) develop and apply the asymptotic principal components

(APC) method to estimate approximate factor models. They show that, given that the average

variance of asset-specific returns is constant through time, the first k eigenvectors of the cross-product

matrix of asset returns are a consistent estimate of the k common factors. Scott (1988) and Jones

(2001) provide evidence that the cross-sectional average asset-specific variance has considerable time

variation. They generalize the APC technique to allow for time-series heteroskedasticity in asset

specific returns.

Neither Scott (1988) nor Jones (2001) model the source or nature of the heteroskedasticity in

returns since an explicit model is not required for application of their techniques. In this paper,

we develop such a model, estimate it, and examine the implications of our findings for asset pricing

theory.

We describe a dynamic approximate factor model which includes a three-component model of the

dynamic heteroskedasticity in asset returns. One component comes from the dynamic heteroskedas-

ticity in factor returns, one from common heteroskedasticity in asset-specific returns, and one from

purely asset-specific heteroskedasticity in asset-specific returns. We use the model to decompose

the dynamic heteroskedasticity of individual asset returns into factor-related, common asset-specific,

and purely asset-specific components. We apply the techniques to monthly US equity returns for the

900-month period January 1926 to December 2000.

We find that all three components contribute to the dynamic heteroskedasticity of individual

asset returns. An interesting aspect of the findings is that a large part comes from the common

asset-specific component. Given that asset-specific returns capture the idiosyncratic movements of

individual security prices, it is interesting that the dynamic volatility of asset-specific return has a

large common component. Something about the random technology generating firm-specific cash

flows, or the dynamic flow of information about these firm-specific cash flows, or investor’s changing
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reaction to firm-specific news, must underlie this common component in the volatility of asset-specific

returns.

We find a strong secular component to common volatility of asset-specific returns. It rises sharply

during the Great Depression, declines sharply after the Second World War, and then trends slowly

upward (with variable slope) in the Post-War period. This is related to the findings of Campbell,

Lettau, Malkiel, and Xu (2001) concerning secular trends in individual-asset volatility. We find

that the typical asset’s factor volatility is high during the depression, declines in the early 1940’s

and (consistent with Campbell, et al. (2001)) is relatively stable in the Post-War period. We also

relate the volatility components to macroeconomic variates. Factor volatility is strongly anti-cyclical

(higher during recessions) and positively correlated with the term spread and default spread in bond

markets. The innovation to common asset-specific volatility is not strongly correlated with the

macroeconomic variates.

2 Econometric Methodology

Using the Center for Research in Security Prices (CRSP) monthly dataset of US equity returns, we

have a very large cross-section n (21,598 assets including all births and deaths) and a quite large time

series T (900 months). We will therefore consider both large n asymptotics and large T asymptotics.

Specifically, we will take n → ∞ and then T → ∞.1 We estimate an approximate factor model by

the modification of the Connor and Korajczyk (1986) APC method due to Jones (2001) that allows

for time series heteroskedasticity assumed away in Connor and Korajczyk (1986). Bai and Ng (2002)

and Bai (2003) give primitive conditions, including restrictions on the rates of n and T, under which

the estimated factors are consistent in various senses suitable for our purposes, and we shall comment

on this further in a subsequent section.

We then define models for heteroskedasticity in both the common factor and the idiosyncratic

components of return. We use the estimated factors and idiosyncratic returns to define empirical

counterparts of our model and to estimate the heteroskedasticity parameters.

There is a sizeable literature on factor ARCH/GARCH models starting with Engle (1987) and

Diebold and Nerlove (1989), and recently reviewed in Sentana (2001). These models are directed

1Given the large cross-section and moderately large time series, it seems reasonable to employ asymptotic approx-

imations that assume n→∞ and T →∞ in such a way that n/T →∞ [although for some purposes we do not need

large T ]. This amounts to a pathwise limit approach where T = T (n) for some function T . Under certain additional

conditions, that are likely to be satisfied in our case, the pathwise limit is the same as the sequential limit in which:

first n → ∞ and then T → ∞. The sort of conditions required include restrictions on the rate at which n/T → ∞
and a so-called tightness condition. This sort of multi-index asymptoptics are discussed in Phillips and Moon (1999).

See also Bai and Ng (2002).
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purely at heteroskedasticity in the common factor, while we also model the idiosyncratic heteroskedas-

ticity, identification being achieved by invoking the large cross-section assumption. We comment

below on the differences between our model and these models.

There have been a number of other advances in the estimation and specification of dynamic factor

models in recent years. Forni and Reichlin (1998), and Forni, Hallin, Lippi, and Reichlin (2000) have

developed and applied dynamic factor models, where the factors have an autoregressive structure in

the mean. This type of dynamic factor model is particularly useful in macroeconomic applications

where factors have strong predictability in their means. We shall not model any dependence in the

mean of the factors but will focus on the volatility structure. This is more relevant for our financial

application since return factors have little or no predictability in their means, due to efficient markets,

but can have strong predictability in their volatilities.

Ahn, Lee, and Schmidt (2001) and Pesaran (2002) have discussed estimation of a factor model

in which some factors are directly observed and others are not. They both propose a more general

class of methods that uses both first and second moment information. They focus on the case where

n is large and T is small. Nevertheless, their estimation strategy is valid in our case.

2.1 Review of Connor-Korajczyk and Jones

Let rt denote the n-vector of excess returns on n assets at time t. We assume that returns follow an

approximate factor model with fixed n×k exposure matrixB, k random factors ft and n asset-specific
returns εt:

rt = Bft + εt. (1)

Let ||X|| denote the operator norm of any matrix X (equal to the maximum eigenvalue for a

symmetric positive definite matrix). We do not assume that ft, εt are i.i.d., but impose the following

weaker conditions on (1):

E[εt|fτ ] = 0 for all t, τ . (2)

lim
n→∞

1

n
B0B =M a nonsingular matrix. (3)

lim
n→∞

kE[εtεt0]k = c <∞. (4)

The estimation method we use for the factors {ft}Tt=1, APC, relies on the law of large numbers
applied to n−1εt0ετ where n is large. Sufficient conditions for this to apply are given in Connor and

Korajczyk (1993): these include restrictions, i.e., mixing conditions, on the cross-sectional depen-

dence and moment conditions. In the temporally heteroskedastic case of this paper, we require these

conditions to hold uniformly over t. Here, we simply assume that the relevant law of large numbers
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holds, i.e.,:

p lim
n→∞

1

n
εt
0ετ =

⎧⎪⎪⎨⎪⎪⎩
0 for τ 6= t

φt > 0 for τ = t.

(5)

Let R denote the n × T matrix of excess returns on the n assets over a time period of length

T . Let F denote the k × T matrix of common factor returns and E be the n × T matrix of asset

specific returns for the same sample. Let bΩ = R0R/n denote the T × T cross-product matrix of

returns. We use Diag[·] to denote the function that transforms a T -vector into a T × T diagonal

matrix and diag[·] (with a lower case d) for the function that changes the diagonal components of a
T × T diagonal matrix into a T -vector. Taking the probability limit of the cross-product matrix as

n goes to infinity, and using (1)-(5):

p lim
n→∞

bΩ = Ω = F 0MF +Diag[φ1, . . . , φT ]. (6)

In the special case considered by Connor and Korajczyk where asset-specific returns are identically

distributed through time we have p lim
n→∞

E0E/n = φIT , where φ is a constant and IT denotes the T ×T

identity matrix. Note that F 0MF has k eigenvectors corresponding to non-zero eigenvalues, and

that these eigenvectors are equal to LF for some nonsingular k × k matrix L. Also, note that the

eigenvectors of F 0MF + φIT equal the eigenvectors of F 0MF.2 Using the fact that the eigenvector

function is a smooth function of a nonsingular matrix this gives, for the case φt = φ for all t:

p lim
n→∞

eigveck[bΩ] = eigveck[p lim
n→∞

bΩ] = LF. (7)

Equation (7) is the basic result from Connor and Korajczyk: under their assumptions, the first k

eigenvectors of the cross-product matrix converge to a rotation of the factor returns. Bai (2003, Theo-

rem 1) derives conditions (including restrictions on the relative growth rates of n and T ) under which

the eigenvectors provide consistent estimates of LF . Jones (2001) generalizes to the heteroskedastic

case by letting the limit of the cross-product matrix of asset-specific returns, p lim
n→∞

E0E/n, be diagonal

rather than scalar. In particular, suppose that we observe this diagonal (rather than scalar) matrix

of cross-sectional mean asset-specific variances Diag[Φ], where Φ = [φ1, . . . , φT ], then given (6) we

2To see this, just write out the eigendecomposition F 0MF = QΛQ0, where Q,Λ are T ×T matrices with QQ0 = IT

and Λ being diagonal with all but the first k diagonal elements being zero. Then, F 0MF + φIT = Q[Λ+ φIT ]Q
0, i.e.,

the eigenvectors of F 0MF + φIT are the same as those of F 0MF by the uniqueness of the eigendecomposition. If we

normalize F so that F 0 is the first k columns of Q, corresponding to non-zero eigenvalues, we are implicitly normalizing

M as the sub-block of non-zero elements of Λ.
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have:

p lim
n→∞

eigveck{Diag[Φ]−1/2bΩDiag[Φ]−1/2}Diag[Φ]1/2 = (8)

eigveck{ Diag[Φ]−1/2F 0MFDiag[Φ]−1/2 + IT}Diag[Φ]1/2 = LF. (9)

We follow Jones in using (8) to estimate the factors and asset-specific returns. Our methodological

contribution is to develop an explicit model for the heteroskedasticity in returns, and to estimate

this three-component model of heteroskedasticity together with the approximate factor model.

2.2 A Two-component Model of Heteroskedasticity in Asset-Specific

Returns

As mentioned in the introduction, the presence of heteroskedasticity in asset-specific returns is not

surprising, but the nature of the heteroskedasticity is interesting. In particular, there is a strong

commonality in the heteroskedasticity, so that the average across n assets of squared asset-specific

return varies through time.

We capture the commonality in asset-specific volatilities with a univariate time-series model

for the cross-sectional mean-square asset-specific return φt (hereafter called common asset-specific

variance). By construction, this variate is always positive. We assume that its logarithm follows a

nonparametric local trend model with stationary innovations:

logφt = gφ(t/T ) + ut, a(L)ut = b(L)ψt, (10)

where ψt is a stationary process, and the lag polynomial a(L) = 1− a1L− . . . apL
p has roots outside

the unit circle. The ‘local’ trend term gφ(t/T ) is motivated by the graphical evidence for secular

trends shown later (Figure 1a). We do not wish to restrict the functional form of gφ(.), and use

semiparametric methods to determine its shape. At the same time we allow for short run dynamics

through the polynomials a(L), b(L). The central version of this model has ψt being a martingale

difference sequence, i.e., E(ψt|It−1) = 0, where It−1 is lagged information. We also consider the case
where ψt is identified off a quantile restriction, so that quantϑ(ψt|It−1) = 0 for some ϑ ∈ (0, 1), where
quantϑ is the ϑ-quantile function. The motivation to consider the quantile model is its robustness

with respect to large observations, which we certainly have during the Great Depression period. In

both specifications we allow for conditional heteroskedasticity in ψt.We give some more detail below

on how the function gφ(.) was estimated and which orders of a, b were chosen.

In either the mean-identified or quantile-identified model, the dominant part is the nonparametric

trend function in terms of interpretation and statistical difficulty. We conducted some unit root tests

below and find against a stochastic trend [unit root] alternative, and in favour of our deterministic
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trend specification. We have tried a number of other specifications for φt, including: specifications

in levels, including monthly dummy variables, and fitting the evident heteroskedasticity in φt with

volatility models, but the basic features of the data remain in these other specifications.

We note that the particular form of the time-series model for φt has no effect on the estimates

for the other components of volatility.

Next we model the purely asset-specific volatility. Let ηt denote the n-vector time-series of

volatility-specific, asset-specific returns. The n−vector of asset-specific returns at time t is the

product of the scalar common volatility and the n−vector of volatility-specific, asset-specific returns:

εt = φ
1/2
t ηt. (11)

Since the scale of the two components in the product (11) is indeterminate we normalize ηt to have

unit expected inner-product
1

n
E[ηt

0ηt] = 1. (12)

Equations (10)-(12) are a type of stochastic volatility model, where φt is the state variable generating

time-varying common volatility. One difference from fixed-dimensional stochastic volatility models

is that the state variable in this stochastic volatility model is approximately observable, by taking a

probability limit for large n.

Although, by construction, ηit has no common volatility across assets, it can still have time-series

autoregressive heteroskedasticity on an individual-asset basis. To capture this, we assume that ηit
follows a standard univariate volatility model for each i

ηit = h
1/2
it zit, (13)

where hit is time-varying variance. We consider three models for this purely asset-specific volatility.

The first is a GARCH(1,1) model (Bollerslev (1986)):

hit = ω0i + ω1ihit−1 + ω2iη
2
it−1, (14)

where (ω0i, ω1i, ω2i) are unknown parameters varying freely from asset to asset.

The second is the GJR model (Glosten, Jagannathan, and Runkle (1993)):

hit = ω0i + ω1ihit−1 + ω2iη
2
it−11(ηit−1 < 0) + ω3iη

2
it−11(ηit−1 ≥ 0). (15)

where 1(x) has the value 1 if the condition x is true and zero otherwise. The third alternative is the

EGARCH model (Nelson (1991)):

log(hit) = ω0i + ω1i log(hit−1) + ω2i(|ηit−1|/hit−1 − ω3iηit−1/hit−1). (16)
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For all three models, we suppose that zit is an innovation sequence that has mean zero and variance

one, conditional on past information. We can allow for general cross-section dependence in zit and

some temporal dependence and heterogeneity (semi-strong GARCH), although the central model

here is i.i.d. across time and asset. We are primarily interested in weakly stationary processes

because only in this case does the unconditional variance of rt exist. This entails certain restrictions

on the parameters of (14)-(16). In (14) we suppose that ω0i > 0, ω1i, ω2i ≥ 0 for positivity of hit, and
ω1i + ω2i ≤ 1 for weak stationarity. In the GJR model, the positivity restrictions are the same as
GARCH(1,1) with the addition of ω3i ≥ 0. The stationarity restrictions are more complicated and
depend on the distribution of zit: the central case is where zit is symmetric about zero in which case

it is necessary and sufficient that ω1i + (ω2i + ω3i)/2 ≤ 1 for weak stationarity. In the EGARCH
model it is not necessary to impose any restrictions on ω0i, , ω2i, ω3i for positivity of variance, and for

both weak stationarity and strong stationarity it suffices that |ω1i| < 1 [under moment conditions on
zit]. See Carrasco and Chen (2002) for more detailed discussion.

2.3 A One-Component Model of Heteroskedasticity in Common Factors

The Diebold and Nerlove (1989) factor ARCH model specifies an ARCH process directly for each

of the unobserved factors ft.3 The fit of the factor model of returns (1) is unaffected if a k-vector

of factor variates ft is replaced with any nonsingular rotation Lft as long as the exposure matrix

B is replaced by BL−1. However the dynamic volatility process followed by any individual factor

is not invariant with respect to a rotation. Hence, volatility models which apply to the individual

factors are problematic, unless a particular, economically meaningful, rotation is chosen to define the

individual factors.

We develop a univariate measure of factor volatility that is invariant to factor rotations. In

particular, note that the quadratic product f 0t(
1
n
B0B)ft is rotation invariant and aggregates in a

useful way the volatility of all the factors. Using the assumed convergence of 1
n
B0B we have

lim
n−→∞

f 0t(
1
n
B0B)ft = f 0tMft. This quadratic product has a useful relationship to φt defined above,

in particular,

p lim
n−→∞

1

n
r0trt = f 0tMft + φt = γt + φt.

In words, cross-sectional mean-square excess return approximately equals the sum of cross-sectional

mean-square common-factor-related return and cross-sectional mean-square asset-specific return.

This approximation ignores any observed cross-sectional covariance between common factor and

asset-specific returns, since this covariance will be small for large n. We suppose that

3Engle (1987) instead replaces ft by observed portfolios.
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log γt = gγ(t/T ) + υt, c(L)υt = d(L)ξt, (17)

where ξt is a stationary process, and the lag polynomial c(L) = 1− a1L− . . . apL
p has roots outside

the unit circle. We allow the function gγ(.) to have a general shape. Similar considerations apply to

the time series process for γt as they did to the time series process for φt.

2.4 Overview

In this section we give a discussion of the full model and the relevant asymptotic theory for our esti-

mates. The full model is (1), (10),(11), (13), (14), (17). The basic unmodelled innovation processes

are ψt, ξt, and the parameters to be determined include the factors ft, the dynamic parameters in

the lag polynomials a, b, c, d, the functions gγ, gφ, and the parameters of the individual volatility

models, {ωji}. Also to be determined are the number of factors to include and the orders of the
various dynamic process and the shapes of the trend functions. In view of the enormous sample size

at our disposal and the large number of parameters to be estimated we do estimation of the separate

parts of our model one at a time rather than try to jointly optimize. It may be possible to improve

the efficiency of some of our procedures, but a more complicated procedure would carry some risks

due to the consequences of misspecification.

Under (1)-(12) we have that p lim
n→∞

bF = F and p lim
n→∞

bΦ = Φ by the continuous mapping theorem for

each T . This result can be extended to max1≤t≤T || bft − ft|| = op(1) and max1≤t≤T ||bφt − φt|| = op(1)

when T is allowed to grow with n, under some restrictions on the growth of T, n; see Bai (2003).

Regarding the parameters of our time series models, for example the parameters of gφ(.), a(L), and

b(L), we will compute standard errors based on a standard root-T consistency theory. In order for

the estimation error at the factor estimation stage not to affect the subsequent time series estimation,

we require the stronger uniform convergence results:

max
1≤t≤T

°°° bft − ft

°°° = op(T (n)
−1/2) and max

1≤t≤T

°°°bφt − φt

°°° = op(T (n)
−1/2). (18)

These conditions can be satisfied under strong restrictions on the rates at which n, T increase, see

Bai and Ng (2002) and Bai (2003). Specifically, a necessary condition is that n/T 2 →∞. Given the
very large cross-section we have, this condition seems quite reasonable. When the required regularity

conditions are satisfied, our time series estimates are
√
T consistent and the usual distribution theory

holds.
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3 Data and Estimation Details

We use 900 months of excess returns data on 21,598 (total) US equities for the period January 1926

to December 2000 from the Center for Research in Security Prices (CRSP) monthly returns data

file. For the estimation of the factor model, we divide the period into fifteen, 60-month subperiods.

Connor and Korajczyk (1993) find between three and six pervasive factors for the CRSP monthly

data whereas Bai and Ng (2002), relying on a different test but similar CRSP data, argue for only

two pervasive factors. Jones (2001) used five factors. After experimenting with five, ten and fifteen

factors, we decided to use five as the number of pervasive factors.

We use the Connor and Korajczyk (1987) definition of the cross-product matrix to account for

missing observations:

Ωtτ =
1

ntτ

ntτX
i=1

ritriτ ,

where ntτ is the number of firms with returns in both months t and τ and the index runs over these

firms. Table 1 shows the minimum, maximum and average of ntt and ntτ t 6= τ within each 60-month

subperiod.

The first estimation step produces n-consistent estimates of the k × T matrix of factor returns

F and common asset-specific variances Φ = (φ1, . . . , φT )
0 on each of the 60-month subperiods. The

second-stage estimates come from essentially the same procedure as in Jones (2001). Let bΛ denote
the k × k diagonal matrix of the first k eigenvalues of the cross-product matrix bΩ. We have:

bF = eigveck{Diag[bΦ]−1/2bΩDiag[bΦ]−1/2}Diag[bΦ]1/2 (19)

bΦ = diag[bΩ− bF 0bΛ2 bF ]. (20)

The system is only iteratively defined since the estimation of bF in (19) requires bΦ from (20) and

vice-versa. We begin with bΦ = IT in (19) and iterate between the two estimation problems, as

suggested in Jones (2001).4

The estimation of the common asset-specific variances Φ = (φ1, . . . , φT )
0 in (20) assumes balanced

panels; the extension to unbalanced panels is straightforward. We regress each asset’s excess return

on a constant and the previous-iteration bF and keep the time-series regression residuals bεit. For this
4In the balanced panel case, this procedure is equivalent to minimizing the criterion

TX
t=1

nX
i=1

(rit − b0ift)
2
φ−1t +

TX
t=1

logφt

with respect to (φ1, . . . , φT , f1, . . . , fT ) and (b1, . . . , bn) subject to the identifying restrictions that F
0F/T = IT ; see

Bai and Ng (2002) for the homoskedastic special case.
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set of regressions we use all assets with at least 36 months of returns within the relevant subperiod.

The cross-sectional mean square of bεit at time t is bφt.
4 Empirical Results

4.1 Factor Estimation

We first report on the convergence of our iterative factor extraction method. We calculate the cross-

sectional average of adjusted R2 from the time-series regressions of each asset’s excess return on the

five factor returns. Note that the first iteration is the uncorrected APC procedure and the final

iteration is the Jones procedure. For most of the subperiods (14 out of 15, not shown), the Jones

procedure has a lower average R2 than the uncorrected procedure, but the difference tends to be

small. For each iteration, Table 2, columns two to four, show the minimum, maximum and average

values of the average individual-asset R2 statistics, across the fifteen subperiods. The minimum and

average values are slightly higher with the uncorrected procedure and the maximum is (very slightly!)

higher with the Jones procedure.5

To test the convergence of the iterative algorithm, we run a time-series regression of each factor

return on all of the five factors from the previous iteration, and calculate the minimum of the adjusted

R2s across these five regressions. We then take a minimum across the fifteen subperiods and use this

as the convergence criterion. This minimum R2 is displayed in the last column of Table 2. In all

subperiods the algorithm converges with high precision after no more than nine iterations.

4.2 Volatility Patterns and Trends

We next report the results of our time-series model for φt, the common asset-specific variance. Figure

1a shows the time-series of φt (the dots in Figure 1a). The presence of strong secular trends seems

obvious from the graph. However there are no obvious structural breaks associated with the 60-

month factor model estimation subperiods, and so we use the full 900-month sample for this and

later estimation stages.6 In view of the potential large influence of the late 1920’s and early 1930’s

we also recomputed our estimators for the sub period 1946:01 onwards for the mean-identified model.

5Scott (1988) finds that the modified APC method gives results similar to APC while Jones (2001) finds that

the modification improves empirical fit of the extracted factors. ITG (2002, Section 7.3) discusses the out-of-sample

performance of the alternative estimators.
6We have also re-estimated our main time series equations with dummy variables that are 1 at the start of each of

the subperiods and zero elsewhere. The substantive results are not affected by the inclusion of the dummy variables,

and only one or two dummy variables themselves are significant at the 5% level in any given equation.
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Also for robustness reasons we estimated the quantile-identified model using the full sample.

Our local trend model (10) has quite different implications from say a unit root process, and we

first seek to establish which of these two model types is more consistent with the data. We report

the results of some standard unit root tests in Table 3. We examine the level and logs using the

Augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) tests, including either a constant or

a constant and linear trend, as well as a number of lags to represent the short run dynamics. There

seems to be very little evidence of a unit root in any of the specifications, especially when using the

PP test. Therefore, we feel that our deterministic trend model is well supported by the data.

We estimate (10) by two different methods. First, we used Hildreth-Lu OLS time-series regression.

In this approach we assume that the deterministic trend function gφ(.) belongs to a class of time-

series polynomials, in particular, the Chebychev polynomial class. The number of terms was selected

by the Akaike criterion. In the full sample case this yielded 5 terms. In the post-war subsample 4

polynomials were selected. We experimented also with the order of the autoregressive process and

found that 2 and 4 lags, respectively, were sufficient to induce whiteness in the residual processes.7

Table 4 Panel A shows the coefficient estimates and their t-statistics, computed with White’s

heteroskedasticity consistent standard errors. The secular trend function gφ(t) is shown as the solid

line in Figure 1a. The main feature is the upward trend beginning in the mid-sixties. This trend is

still evident in the subsample estimation beginning 1946:01. The R2 were 0.502 for the full sample

and 0.526 for the subsample.

To estimate (10) under the quantile restriction, we used nearest-neighbor quantile estimation as

described in Härdle and Linton (1994) with k = 61 (two-sided) nearest neighbors, i.e., the window

is a rolling 5 years. In Figure 2a we show the results of a nonparametric quantile regression of ψt

on time. The graph shows the median along with the 75% and 25% quantiles. [It also shows the

estimated conditional mean using the same nearest neighbor method]. The advantage of the nearest-

neighbor smoothing method is that it is local, so that there is no influence from the Great Depression

period to the post war period. In addition, even during a period with large outliers, the quantile

smoothers should be influenced only by a substantial part of the data, not a few rogue outcomes.

The main feature of this graph agrees with the results of the previous mean regressions, namely there

is a strong upward trend in this component of volatility after the mid-sixties.

Next we analyze the time series heteroskedasticity in factor returns using

bγt = 1

n
(rt − bεt)0(rt − bεt).

7Specifically, we computed the Ljung-Box Q statistics for the residuals and found very high p-values uniformly

across the first 36 lags. Specifically, nearly all p-values exceeded 0.5, and the lowest p-value was 0.171 out of the 36

lags for each of the four residual series.
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We use the same cross-section of assets for calculating bγt as used earlier for the estimation of φt.
Figure 1b shows the time series of bγt.
As was the case for φt there is visual evidence of secular trends in Et−1[log γt], and we use the

same approach as in in fitting the trend in log φt. The coefficient estimates and t-statistics are shown

in Table 4, Panel B. The R2 were 0.221 for the full sample and 0.164 for the subsample.

The secular trend function gγ(t/T ) from the polynomial fit is shown as a black line in Figure 1b,

while in Figure 2b we show the corresponding nearest neighbor fits. The series is dominated by the

Great Depression part of the data, and there is much less evidence of an upward trend in γt in the

postwar period.

The initial impression from Figures 1a and 2a is that the stock market has become increasingly

volatile over the last 40 years. As Campbell et al. (2001) have noted and Figures 1b and 2b confirm,

this initial impression is misleading. During this period, market-wide index volatility has not shown

an upward trend (see Schwert (1989)). Except for the Great Depression, five-year market index

volatility is fairly flat,8 as is factor volatility, bγt. It is the cross-sectional dispersion of returns, in
terms of asset-specific returns that has trended upward. As pointed out by Campbell et al. (2001),

this implies an increase in the number of assets required to achieve a given level of diversification.

4.3 Economic Forces and Volatility

Officer (1973), Schwert (1989), Hamilton and Lin (1996), and Campbell et al. (2001) find that

return volatility (using various measures) moves with the business cycle with higher volatility in

recessions. We look at the relation between φt, γt, ψt, (from Eq. (10)) and ξt (from Eq. (17))

with six macroeconomic indicators. The first macroeconomic variable is a dummy equal to 1 during

NBER dated economic expansions and 0 during economic contractions. The same macroeconomic

variable is used by Campbell et al (2001, Table VIII). The second macroeconomic variable that we

use is the yield spread between long-term U.S. government bonds and one-month Treasury bills (from

Ibbotson Associates (2003)), which we call the Term Spread. The third macroeconomic series is the

yield spread between Moody’s Aaa and Baa rated bonds, which we call the Default Spread. Our

fourth macroeconomic series is the dividend yield on the S&P portfolio over the trailing three months

(from Ibbotson Associates (2003)). Our remaining two macroeconomic series are available only for

a shorter time period (February 1959 to December 2000). They are the experimental leading (XLI)

and coincident (XCI) indicators of Stock and Watson (1989).9

8This result has been widely documented elsewhere. We have estimated trend models in a variety of other index

volatility measures including equal weighted and value weighted, S&P500 etc, and have found no significant trend in

any of them.
9Updated series are avialable at http://ksghome.harvard.edu/~J.Stock.Academic.Ksg/xri/0206/xindex.asc.
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Both φt and γt have statistically significant cross-correlations with the economic variables (except

for the correlations between φt and the NBER variable).
10 However, much of this correlation for φt

is due to the predictable component since the cross correlations between the innovations and the

macroeconomic series (discussed in detail below) are not significant. The innovations in γt are

significantly cross-correlated with a number of the macroeconomic series.

In Table 5 we show the t-statistics for the cross correlations (for lags of 12 months to leads of

12 months) between several macroeconomic series and shocks to volatility components ψt, (from Eq.

(10)) and ξt (from Eq. (17)). Shocks to the common volatility of asset-specific returns, ψt, are

not significantly related to the levels of the macroeconomic series. However, shocks to the common

factor volatility, ξt, are significantly positively correlated with the default spread and significantly

negatively related to the levels of an NBER expansion dummy variable, the U.S. Treasury term

spread, and the experimental leading index.

We find that shocks to common asset-specific volatility, ψt, are not significantly correlated with

leads or lags of the NBER indicator. The factor volatility shock, ξt, is significantly negatively

correlated with lags of the NBER dummy and with leads of up to five months. The results are

generally consistent with the negative correlations between volatility and the NBER dummy found

by Campbell et al (2001). Our results show that this relationship is much stronger for factor

volatility than for common asset-specific volatility (Campbell et al do not separate the components).

We calculate Ljung-Box Q-statistics (see Greene (2000, p. 542)) to test hypotheses that correlations

are jointly zero for lags and leads 1-3, 1-6, 1-9 and 1-12. These are shown in Table 6. They are all

insignificant for the correlations of the NBER dummy with ψt, and are all significant for correlations

with ξt.

Table 5 shows that there is almost uniformly positive correlation at all leads and lags between

the Term Spread and ψt. The correlations are generally insignificant as are the Ljung-Box statistics.

In contrast, shocks to factor volatility, ξt, are negatively correlated with lagged values of the Term

Spread (and leads up to two months). Many of these negative correlations are significant. The

Q-statistics reject the hypothesis that correlations are jointly zero for all of the lag combinations.

All of the correlations between ψt and ξt and the Default Spread, except one, are positive. There

is uniformly positive correlation at all leads and lags between the Default Spread and ψt. The

individual and joint test for correlations are insignificant. Shocks to factor volatility, ξt, are generally

positively correlated with lags and leads of the Default Spread. The correlations are individually

significant for lags 1 and 0 as well as for leads 6 and 7. The Q-statistics reject the hypothesis that

correlations are jointly zero for of the lag combinations of 1 to 3 months and 1 to 6 months. All lead

combinations tested are significantly different from zero.

10The results for φt and γt are not shown but are available from the authors on request.
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The correlations between ψt and ξt and the S&P dividend yield are individually and jointly

insignificant. There is positive, but statistically insignificant, correlation between ψt and XLI at all

leads and lags. There is negative correlation between ξt and XLI at all leads and lags. These are

individually significant from lags of eight months to leads of four months and jointly significant for

all combinations tested in Table 6. Neither ψt nor ξt are significantly correlated with the coincident

index (XCI).

4.4 Purely Asset Specific Volatility Dynamics

To analyze the purely asset-specific component of dynamic heteroskedasticity, we estimate individual

GARCH, GJR and EGARCH models on scaled asset specific returns, ηit = φ
−1/2
t εit. We limit this

part of the analysis to assets with at least 90 months of continuous return observations, which

decreases the total number of assets to 7054. In view of the large number of assets we cannot do

an asset by asset model specification search, so instead just estimate each of the individual models

for each asset i = 1, . . . , n using asset-by-asset maximum likelihood and then report goodness of fit

and other outcomes. We estimate the parameters assuming normally distributed innovations, and

then alternatively assuming a t-density where the degrees of freedom of the t-density appears as an

additional parameter (Bollerslev (1987)).

For the GARCH and GJRmodels we use the Engle and Sheppard (2001) target variance approach

to estimate the intercept coefficient. That is, we transform the GARCH model (14) into hit =

ω0i + ω1i(hit−1 − ω0i) + ω2i(η
2
it−1 − ω0i), which leaves the model unchanged except for the definition

of the intercept coefficient. Note that in this form the intercept is the unconditional variance.

The transform of the GJR model (15) is straightforward, by analogy. We then use the sample

variance as the estimate of ω0i. This removes the intercept coefficient from the nonlinear estimation

routine. We find that using this target variance approach improves estimation reliability. There is

no obvious way to implement the target variance approach for the EGARCH model so we do not

attempt it. Each model is estimated using the Berndt-Hall-Hall-Hausman maximization routine. In

the maximization routine we impose the non-negativity constraints required to ensure non-negative

variance; for GARCH, this is ω0i, ω1i, ω2i ≥ 0; for GJR, ω0i, ω1i, ω2i, ω3i ≥ 0, there is no restriction
needed for EGARCH. We do not impose the additional conditions for weak stationarity.

Table 7 compares the performance of the models by calculating, for each model and for each asset,

the mean absolute error (MAE). This is found by treating the implied volatility bhit as a prediction of
the squared residual, η2it , taking the absolute value of the difference, and then taking the mean over

the sample period (the sample periods differ across assets but are always at least 90 months long). In
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Table 7 we show the median and interquartile range of these MAE’s across assets.11 For each asset

we also calculate which of the six model choices had the lowest and highest MAE. In some cases

the estimation routine did not converge, or gave estimates which imply covariance nonstationarity;

the percentages of these two cases are also shown in Table 7. The MAE calculations are done for

the intersection of assets where the estimation routine converged for all six models. The best fitting

of the six models is the EGARCH model with a t-density. It has the lowest interquartile range,

lowest median, best fit for the largest percentage of assets, and worst fit for the smallest percentage

of assets. The GARCH model with a t-density is the worst fitting by all criteria except the upper

border of the interquartile range, where the EGARCH with a normal density has a slightly higher

value.

Table 8 Panel A shows the median and interquartile range of all the coefficient estimates, and

Panel B does the same for the t-statistics of these coefficients. For all three models, the estimated

degrees of freedom of the t-density is low, indicating considerable positive excess kurtosis. (Note that

the t-statistic of the degrees of freedom parameter shown in Panel B is not intended as a test for the

degrees of freedom equal to zero, since this is not an allowable value for the degrees of freedom; the

t-statistic in this case should be viewed simply as the coefficient estimate divided by its standard

error.)

The GJR model only differs from a GARCH model if the coefficient ω3i differs from ω2i. The

usual empirical finding is a larger volatility effect from a negative return than from a positive return

of equal magnitude, which implies ω2i > ω3i. There is some evidence for this asymmetry, although

the difference is not usually significant on an asset-by-asset basis. In the EGARCH model, larger

volatility effects associated with negative returns is implied by ω4i > 0. Again, there is some evidence

for this type of asymmetry.

5 Conclusion

In an approximate factor model, the random return of each asset is divided into factor-related return

and asset-specific return. Given a factor model, the time-series heteroskedasticity of individual

asset returns can be represented with three components: a factor-related, common asset-specific,

and purely asset-specific component. We develop and estimate a heteroskedastic factor model for

monthly US equity returns with this three-component structure.

Each of the three components is modeled separately. For the common asset-specific component,

we develop a univariate stochastic volatility model. For the factor component we develop a new

multivariate GARCH model that reduces in estimation to a univariate GARCH-type model and

11We report median values where possible so as to mitigate any problem with survivorship sample selection.
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is invariant to factor rotations. For the purely asset-specific component we use a cross-section of

GARCH-type models.

We find that all three components contribute to the heteroskedasticity of individual asset returns.

We find that both factor variance and common asset-specific variance have secular trends. Both

components are very high in the Great Depression and then decline until the mid-1950’s. After that,

common asset-specific variance shows a long steady increase.

Previous authors have shown that return volatility (using various measures) moves with the

business cycle with higher volatility in recessions. Using our factor model decomposition, we extend

these existing results. The innovations in factor-related volatility have negative correlation with a

expansion indicator (a dummy variable which has value one in NBER-dated expansions and zero

elsewhere), positive correlation with the term premium and default premium in bond yields, and

positive correlation with average dividend yield. The innovations in common asset-specific volatility

do not have any clearly strong links to the business cycle or yield variates. A theoretical explanation

for these observed patterns, whether a rational-choice-based theory or a behavioural theory, would

be a notable contribution.

Our asset-by-asset analysis of scaled asset-specific return shows that there is also an empirically

identifiable purely asset-specific component to dynamic volatility. It might be interesting to examine

whether the dynamic process of purely asset-specific volatility is related to dynamic information

releases and/or trading volume of each particular asset.
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Table 1 
Number of return observations for factor estimation 

Number of assets per month: ntt Number of assets in cross-products: ntτ t≠τSubperiod 
Minimum Average Maximum Minimum Average Maximum 

1926/1-1930/12 494 610 730 429 539 722 
1931/1-1935/12 688 703 725 636 676 721 
1936/1-1940/12 708 757 780 642 723 778 
1941/1-1945/12 781 804 842 749 783 838 
1946/1-1950/12 847 939 1004 826 907 1003 
1951/1-1955/12 1003 1031 1044 944 1006 1043 
1956/1-1960/12 1041 1060 1101 939 1013 1099 
1961/1-1965/12 1100 1756 2118 961 1463 2109 
1966/1-1970/12 2111 2188 2344 1625 1953 2328 
1971/1-1975/12 2345 3958 5482 2007 3131 5422 
1976/1-1980/12 4510 4683 4826 3461 4232 4800 
1981/1-1985/12 4771 5364 5880 3335 4575 5830 
1986/1-1990/12 5471 5913 6266 3423 5007 6214 
1991/1-1995/12 5686 6304 7087 3915 5324 7002 
1996/1-2000/12 6664 7293 7687 4012 6072 7628 
 
Notes to Table 1:  Within each 60-month subperiod, the Table shows the minimum, 
average and maximum number of assets each month (columns two to four) and the 
minimum, average and maximum number of assets with returns in months t and τ for 
all t≠τ.   
  
 
 



Table 2 
Cross-sectional average individual-asset adjusted R2s, and convergence criteria for 

iterative factor estimates*  
Cross-sectional average individual-asset 
adjusted R2s 

Iteration 
number 

Minimum Average Maximum 

Convergence 
criteria 

1 .137 .365 .649 NA 
2 .132 .361 .650 .252 
3 .131 .360 .650 .847 
4 .131 .359 .650 .933 
5 .131 .358 .650 .964 
6 .131 .358 .650 .971 
7 .131 .358 .650 .988 
8 .131 .358 .650 .999 
9 .131 .358 .650 1.000 
10 .131 .358 .650 1.000 

 
 

 
Notes to Table 2: Time-series regression of each asset against all five factors is 
applied to each asset with at least 36 observations within each sixty-month factor 
estimation subperiod.  The cross-sectional average R2 is calculated across all the 
regressions within each sixty-month subperiod.  The minimum, average and 
maximum values of these cross-sectional average R2s are taken across the fifteen 
subperiods.  The convergence criteria is the minimum adjusted R2 from the regression 
of each factor on the five factors from the previous iteration.  The minimum is taken 
across all five factors and all fifteen subperiods.  To save space, only the first ten 
iterations are shown in the table since iterations 11-15 have identical values to 
iteration 10.   



Table 3. Unit Root Tests

Levels Logs

Includeds no. lags ADF PP ADF PP

0 -13.801 -13.801 -15.371 -15.371

1 -8.869 -12.819 -9.869 -14.547

2 -6.658 -12.808 -7.818 -14.722

cons only 3 -5.134 -13.043 -6.438 -15.045

4 -4.544 -13.528 -5.520 -15.480

5 -4.212 -14.011 -4.800 -15.941

6 -3.434 -14.408 -4.274 -16.432

7 -3.218 -14.913 -3.827 -16.919

8 -2.711 -15.346 -3.569 -17.420

0 -14.758 -16.225 -16.225 -16.225

1 -9.577 -13.895 -10.512 -15.507

2 -7.251 -13.944 -8.384 -15.717

3 -5.653 -14.221 -6.957 -16.059

cons&trend 4 -5.034 -14.733 -6.002 -16.503

5 -4.703 -15.240 -5.267 -16.971

6 -3.898 -15.662 -4.720 -17.466

7 -3.681 -16.187 -4.268 -17.957

8 -3.158 -16.642 -4.000 -18.461

Notes to Table 3. This gives the values of the Augmented Dickey Fuller (ADF) and Phillips

Perron (PP) test statistics for the null hypothesis of a unit root. The test statistics are computed

for the case with a constant (cons only) included and the case with both a constant and linear trend

(cons and trend) included, and for a number of choices of short run dynamics (i.e., lags k). The

critical values are given below:

Critical Value Without Trend: 1% is -3.440, 5% is -2.865, 10% is -2.569

Critical Value With Trend: 1% is -3.973, 5% is -3.417, 10% is -3.131
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Table 4 
Time-series models of common asset-specific variance and common factor variance 

 
Panel A: Common asset-specific variance 
 
January 1926 � December 2000 
 b0 b1 b2 b3 
coefficient -4.67 .439 .670 -.052 
t-statistic -148.5 8.32 14.0 -0.99 
 b4 b5 a1 a2 
coefficient -.170 .361 .191 .100 
t-statistic -3.52 7.63 2.92 1.76 
 
 
January 1946 � December 2000 
 b0 b1 b2 b3 
Coefficient -2.97 -2.75 3.18 -1.77 
t-statistic -1.63 -.81 1.23 -1.07 
 b4 b5 a1 a2 
Coefficient .723 -.025 .160 .139 
t-statistic .90 -.09 1.89 1.95 
 
 
Panel B: Common factor variance 
 
January 1926 � December 2000 
 b0 b1 b2 b3 b4 
Coefficient -5.85 .002 .449 .396 -.184 
t-statistic -72.1 0.01 3.53 3.09 -1.61 
6.10 b5 a1 a2 a3 a4 
Coefficient .702 .136 .106 .106 .041 
t-statistic 6.10 3.73 3.04 2.96 1.24 
 
 
January 1946 � December 2000 
 b0 b1 b2 b3 b4 
Coefficient -1.54 -7.92 6.45 -3.31 1.52 
t-statistic -.40 -1.12 1.19 -.95 .90 
 b5 a1 a2 a3 a4 
Coefficient .161 .139 .126 .096 .059 
t-statistic .27 3.33 3.00 2.35 1.48 
 
Notes to Table 4.  
 
φt = gφ(t)+ut, ut = a1ut-1+ a2ut-2+εt 

gφ(t) = 5th-order Chebychev polynomial in time with coefficients b0,�,b5 

γt = gγ(t)+ut, ut = a1ut-1+ a2ut-2+ a3ut-3+ a4ut-4+ εt 

gγ(t) = 5th-order Chebychev polynomial in time with coefficients b0,�,b5 
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Table 7 
 

Comparative performance of GARCH, Glosten-Jagannathan-Runkle and EGARCH 
models, using both normal and t-density for the innovations 

 
Mean Absolute Error (MAE)  %converged %stationary 
lower 
quartile 

median upper 
quartile 

% assets 
lowest 
MAE 

% assets 
highest 
MAE 

GARCH 99.9 97.1 1.58 2.97 5.92 0.1 5.8 
t density-
GARCH 

99.6 98.0 1.62 3.11 6.19 0.1 38.7 

GJR 89.4 89.1 1.41 2.61 5.09 21.7 21.5 
t density-
GJR 

93.3 92.3 1.33 2.45 4.69 16.8 12.5 

EGARCH 96.0 91.0 1.58 3.03 6.43 0.5 30.0 
t density-
EGARCH 

95.4 93.6 1.18 2.16 4.04 61.0 0.3 

 



Table 8 
Coefficient estimates for GARCH, Glosten-Jagannathan-Runkle and EGARCH models, 

using both normal and t-density for the innovations 
 

Panel A: Coefficients 
 
 ω0 ω1 ω2 ω3 ω2-ω3 DF 

Lower 
quartile 

1.29 .070 .043 - - - 

Median 2.35 .428 .161 - - - 

GARCH 

Upper 
quartile 

4.40 .702 .336 - - - 

Lower 
quartile 

1.29 .041 .376 - - 3.34 

Median 2.35 .221 .615 - - 4.15 

Tdensity-
GARCH 

Upper 
quartile 

4.38 .471 .781 - - 5.60 

Lower 
quartile 

1.28 .187 .000 .000 -.062 - 

Median 2.33 .454 .076 .048 .008 - 

GJR 

Upper 
quartile 

4.35 .565 .203 .132 .134 - 

Lower 
quartile 

1.28 .168 .131 .002 .048 .673 

Median 2.33 .433 .277 .028 .200 1.49 

Tdensity-
GJR 

Upper 
quartile 

4.34 .660 .479 .132 .425 3.58 

Lower 
quartile 

.001 -.233 .000 -.269 - - 

Median .173 .495 .263 .261 - - 

EGARCH 

Upper 
quartile 

.813 .854 .574 .735 - - 

Lower 
quartile 

-.438 .088 .000 -.204 - 2.43 

Median -.137 .687 .116 .251 - 2.86 

Tdensity-
EGARCH 

Upper 
quartile 

-.012 .883 .222 .684 - 3.49 

Notes to Table 8A. The volatility models are   
GARCH   ht = ω0 + ω1(ht-1-ω0) + ω2(εt-1

2-ω0) 
GJR  ht = ω0 + ω1(ht-1-ω0) + ω2(εt-1

2-ω0)δ{εt-1<0} + ω3(εt-1
2-ω0)δ{εt-1≥0} 

EGARCH log(ht) = ω0 + ω1log(ht-1) + ω2(|εt-1/ ht-1 | - ω3 (εt-1/ ht-1)) 
DF = estimated degrees of freedom of the t-density of the innovations 
 



 
 

Panel B: t-statistics 
 
 ω0 ω1 ω2 ω3 ω2-ω3 DF 

Lower 
quartile 

- 0.79 0.37 - - - 

Median - 2.47 1.27 - - - 

GARCH 

Upper 
quartile 

- 6.83 2.53 - - - 

Lower 
quartile 

- 0.20 1.30 - - 3.46 

Median - 0.68 2.27 - - 3.92 

Tdensity-
GARCH 

Upper 
quartile 

- 1.67 3.73 - - 4.47 

Lower 
quartile 

- 0.50 0.00 0.04 -0.84 - 

Median - 1.63 0.40 0.30 -0.14 - 

GJR 

Upper 
quartile 

- 8.45 1.08 0.74 0.39 - 

Lower 
quartile 

- 0.42 0.45 0.03 0.67 0.20 

Median - 1.06 0.83 0.16 0.99 0.92 

Tdensity-
GJR 

Upper 
quartile 

- 2.09 1.46 0.43 3.09 4.36 

Lower 
quartile 

 -0.57 0.00 -0.83 - - 

Median  1.42 1.15 0.84 - - 

EGARCH 

Upper 
quartile 

 4.39 2.65 2.61 - - 

Lower 
quartile 

 0.16 0.00 -0.66 - 2.31 

Median  1.71 0.35 0.84 - 4.23 

Tdensity-
EGARCH 

Upper 
quartile 

 3.41 0.67 2.60 - 6.14 

 



Figure 1a. Shows Chebychev Polynomial …t of Át against time along with data

points.



Figure 1b. Shows Chebychev Polynomial …t of °t against time along with data

points.



Figure 2a. Shows the nearest neighbor estimated median, lower quartile, upper

quartile, and mean regressions of Át on t=T : The procedure uses k = 60 nearest

neighbors.



Figure 2b. Shows the nearest neighbor estimated median, lower quartile, upper

quartile, and mean regressions of °t on t=T: The procedure uses k = 60 nearest

neighbors.
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