Research News

Novel amino-acid based biological energy-harvesting sensor for pipe leak detection

  • 13 May, 2021


Dr Favour Okosun, Dr Mert Celikin and Associate Professor Vikram Pakrashi from UCD School of Mechanical and Materials Engineering have developed a novel Structural Health Monitoring technology for detecting damage and leaks in water pipes using the vibrations generated by the flow of water moving through the pipes.

The technology uses a novel low-cost, eco-friendly, biological sensor developed by Dr Sarah Guerin from University of Limerick (UL).

The sensors generate a change in voltage related to leakage or damage in pipes through energy harvesting and can detect the extent of such leakage or damage as well in real-time.

The work, funded by the Irish Research Council, is the fruit of a collaboration between the Bernal Institute at UL and UCD Mechanics, Dynamical Systems and Risk Laboratory in UCD College of Engineering and Architecture, of which Associate Professor Vikram Pakrashi is director.

A senior author on the study who has developed extensive testing facilities for validating new materials for structural health monitoring, Associate Professor Pakrashi said the findings of the research were significant: "These amino-acid-based sensors will provide real-time sensing of pipe degradation, allowing for data-driven decision making on repair and maintenance, aiding in the global challenge of equitable water access. The work opens up future application possibilities in a wide range of sectors, including renewable energy and industry 4.0."

Dr Favour Okosun, whose doctoral research created the application and validation of the novel sensor, said: "This is the first time such materials have been applied for real engineering problems – and it has addressed one of the core challenges of our time – water, detecting leaks as small as 2mm.”

Dr Mert Celikin, who helped develop the validation, said: "It is also interesting to see SFI Centres SSPC, MaREI and I-FORM to come together for this impactful work."

A study of the research, 'Flexible Amino Acid-Based Energy Harvesting for Structural Health Monitoring of Water Pipes,' has just been published in the Journal Cell Reports Physical Science.

"Biomolecular piezoelectric materials such as these offer an inexpensive, non-toxic and renewable alternative to current commercial piezoelectric devices, which rely on toxic heavy elements or require heavy processing," said Dr Guerin, a postdoctoral researcher at the Department of Physics and the Bernal Institute in UL, who has been developing amino acid crystal devices since 2017.

Leak detection in fluid-carrying pipes is crucial for sustainable water access, and vibration-based techniques have proven to be effective at early detection of leak onset. Current commercial solutions are either battery powered, or if piezoelectric, very costly. Additionally, most commercial accelerometers have rigid structures, making them unsuitable for bonding to curved pipes.

Dr Guerin added: "It is flexible, cheap to make, and outperforms ceramics and polymers that are used in these structural health monitoring applications. The fabrication process is suitable for mass production of these devices."