Exotic non-Fermi liquid demonstrated

New research lead by UCD Theoretical Physicist Dr Andrew Mitchell has revisited non-Fermi liquid physics in quantum dots and indicates the presence of a possibly observable Majorana fermion at a symmetry point. The findings were published as an "Editor's Suggestion" in the prestigious APS Physical Review Letters.







Evidence for coupling of the Higgs boson to muons

A new result released by the CMS Collaboration presents evidence of the Higgs boson interacting with the muon. Members of the School of Physics at UCD were responsible for the high-level trigger system to record the data analysed.






Quantum topology uncovers new features of the famous 'Mott' transition in materials

New research from the group of UCD Theoretical Physicist Dr Andrew Mitchell shows that the famous 'Mott' metal-insulator transition in materials science is in fact related to deep concepts in quantum topology. The findings were published as an "Editor's Suggestion" in the APS Physical Review.







Direct coupling of the Higgs boson to the bottom quark observed

Prof. Martin Grunewald of UCD School of Physics has been involved with the observation of coupling between the Higgs boson and the bottom quark at the CMS experiment in CERN. The observation represents yet another important milestone reached in the scrutiny of the Higgs boson and its interactions with Standard Model particles.



Astronomers Publish New Map of the Sky Detecting Thousands of Previously Unknown Galaxies

An international team of more than 200 astronomers from 18 countries, including researchers from University College Dublin (UCD), has today published the first phase of a major new sky survey at unprecedented sensitivity using the Low Frequency Array (LOFAR) telescope.



Wavefront sensing with digital micromirrors

Associate Prof. Brian Vohnsen of UCD School of Physics and his team have developed a Hartmann–Shack wavefront sensor that employs a digital micromirror device in combination with a single lens for serial sampling by scanning. The research is part of an H2020 ITN on Myopia Research.





Astronomers witness death of massive star

An international team of astronomers, including UCD physicist Dr Morgan Fraser, have managed to catch the first flash of light from an exploding star. The team used the four-meter Blanco telescope in Chile to repeatedly scan a small region of the sky, and managed to detect a handful of stars in distant galaxies at the moment they exploded as supernovae. The research is published in Nature Astronomy.



VERITAS supplies critical piece to neutrino discovery puzzle

The VERITAS collaboration, including UCD School of Physics members Assoc. Prof.
John Quinn and Ph.D. student Ste O'Brien, has confirmed the detection of very-high-
energy gamma-ray emission from the vicinity of a supermassive black hole,
observations prompted by the detection of a spatially coincident high-energy
neutrino event by the IceCube collaboration. This black hole is potentially the first
known astrophysical source of high-energy cosmic neutrinos, a type of ghostly
subatomic particle, and the observations represent a breakthrough in multi-
messenger astrophysics.

Astronomers See Distant Eruption as Black Hole Destroys Star

For the first time, an international team of astronomers including Dr. Morgan Fraser from the School of Physics at University College Dublin, have directly imaged the formation and expansion of a fast-moving jet of material ejected when the powerful gravity of a supermassive black hole ripped apart a star that wandered too close to the cosmic monster. The new findings have been published in a paper in the prestigious international journal Science, led by Prof. Seppo Mattila of the University of Turku in Finland and Dr. Miguel Pérez-Torres from the Institudo de Astrofisica de Andalucia in Spain.

New electronic circuits probe quantum physics on the nanoscale

UCD theoretical physicist Dr Andrew Mitchell has published new research in the journal 'Science' on fascinating quantum mechanical effects in nanoelectronic circuits. The paper uncovers aspects of exotic 'quantum phase transitions', with state-of-the-art experimental results from collaborators in Paris matching beautifully with calculations from the theoretical nanoelectronics group in UCD.




Deformation recovery dynamics in carbon nanotubes

Associate Prof. Dominic Zerulla of UCD School of Physics has uncovered the dynamics of radial deformation recovery processes in single-wall carbon nanotubes, in new research published in the journal 'Carbon'.



Observation of top-antitop-Higgs production

Prof. Martin Grunewald of UCD School of Physics has been involved with the observation of top-antitop-Higgs production at the CMS experiment in CERN. In addition to comprising the first observation of a new Higgs boson production mechanism, this measurement establishes the tree-level coupling of the Higgs boson to the top quark, and hence to an up-type quark, and is another milestone towards the measurement of the Higgs boson coupling to fermions.

Analysing the impact of myopia on the Stiles‐Crawford effect using a digital micromirror

Associate Prof. Brian Vohnsen of UCD School of Physics confirms a clear link between the Stiles-Crawford effect directionality, uncorrected defocus, and axial eye length. This may play a role for emmetropization and thus myopic progression as cone photoreceptors capture light from a wider pupil area in elongated eyes due to a geometrical scaling.

Structure and elasticity of bush and brush-like models of the endothelial glycocalyx

Associate Prof. Vladimir Lobaskin and Aleksei Kabedev of UCD School of Physics study the mechanics of endothelial glycocalyx, the protective polymer brush in our blood vessels, using computer-simulated atomic force microscopy (AFM) experiments, obtaining new insights into its functionality.

Quantum effects in Single Molecule Transistors

Dr Andrew Mitchell of UCD School of Physics has published a paper in Nature Communications on quantum effects and strong correlation phenomena in molecular electronics, and proposed applications for a new generation of quantum interference effect transistors.




Plasmonic Materials for Broadband Solar Harvesting

Associate Prof. Dominic Zerulla of UCD School of Physics presents an optimal solution to the problem of broadband solar havesting in nanostructured plasmonic materials, that significantly improves the efficiency of solid state solar cells.



Volumetric integration model of the Stiles-Crawford effect

Associate Prof. Brian Vohnsen of UCD School of Physics investigates vision through the natural eye pupil by using a new geometrical optics model to calculate the fraction of overlap between light at the retina and the photoreceptor outer segments where absorption triggers vision.