News and Events
- UCD-led space project receives over €7.9m from Disruptive Technologies Innovation Fund
- UCD Researchers awarded over €4m in ERC grants for Biomedical Engineering and Political Economy projects
- Highly Cited: Professor Da-Wen Sun & Professor Paula Bourke listed amongst 2023’s most influential researchers
- ESTEEM Graduate Programme
- Electrical Engineering Class of 1968
- €257,000 allocated to 24 UCD projects in STEM Challenge Fund
- ERC Starting Grants Awarded to UCD Researchers in Humanities and Engineering
- Prof Niall English receives ERC Advanced Grant to optimise nanobubble technology for diverse end applications
- ERC Proof of Concept Grant for UCD Researcher exploring macromolecular crowding in cell culture systems
- SDG Academy and University College Dublin launch new Master’s Pathway in Foundations of Sustainable Development
- Engineers Ireland Accreditation May 31st 2023
- UCD researcher receives ERC funding to unlock insights into pig-to-human heart transplants
- Biomedical Engineering Innovator Receives 2023 NovaUCD Innovation Champion of the Year Award
- Inventor of Disruptive Biosensors with Industrial Bioprocessing Applications Receives 2023 NovaUCD Invention of the Year Award
- seamlessCARE Receives 2023 NovaUCD Spin-Out of the Year Award
- Prof Francesco Pilla launches new bike libraries for Dublin primary schools
- Launch of WATSON Project at UCD
- UCD's Livija Vasilenkaite - First Prize Winner #ThisIsEngineering2023
- Minister Harris and Commissioner McGuinness announce first recipients under the €65M National Challenge Fund
- Séamus McDermott receives his Honorary Doctorate
- Ten Days in the Ruhr - A Student Engineer's Diary (1952) - The Final Days
- Ten Days in the Ruhr - A Student Engineer's Diary (1952) - Part 3
- Ten Days in the Ruhr - A Student Engineer's Diary (1952) - Part 2
- College researchers recognised in UCD Research Impact Competition
- Ten Days in the Ruhr - A Student Engineer's Diary (1952)
- Arup Scholarship Presentation 2022
- UCD wins Higher Education Partnership of the Year Award at the Asia Matters Business Awards
- Dr Amiya Pandit wins the Thomas Mitchell Medal
- RIBA Stirling Prize 2022
- 2022 News Archive
- 2021 News Archive
- 2020 News Archive
- 2019 News Archive
- Engineering Centenary Celebrations
- Students celebrate victory at the ‘Shaping Your Future’ 3D printing innovation challenge
- Takeda Dunboyne Biologics Scholarship Paves career path for UCD Biopharma Engineering Students
- IT Tralee, UCD and Teagasc Partner to Launch First Level 9 Post Graduate Diploma in Bioeconomy with Business.
- BioSimulytics Wins University College Dublin’s 2019 Start- Up of the Year Award
- UCD researchers named among world's top 1% of influential scientists
- Chinese Senior Diplomats Visit UCD Food Engineering Laboratories
- UCD shortlisted for five 2019 Knowledge Transfer Ireland Impact Awards
- Eight UCD schools win Athena SWAN awards for gender equality commitment
- RIBA names Farrell and McNamara firm as 2020 Royal Gold Medal winner
- CIGRE Young Member Showcase
- UCD Chemical and Bioprocess Engineering degrees receive IChemE accreditation
- Two interns in the School of Civil Engineering showcase their research into Irish roads.
- Bristol-Myers Squibb-UCD Strategic Partnership
- UCD Researchers Develop a “Pallet-Integrated” Wireless Dynamometer for CNC Machines
- 3D printing competition invites you to ‘Shape the Future’ for a sustainable world
- UCD Researcher Awarded ERC Proof-of-Concept Funding for Parkinson’s Disease Project
- Professor Da-Wen Sun tops the World Ranking in ESI Highly Cited Papers
- UCD to partner RTÉ Radio 1’s DAVIS NOW LECTURE 2019 series: "Making Home"
- UCD leading €2.1m Horizon 2020 project to tackle climate change impact on food safety
- NIBRT announce collaboration with University College Dublin, to re-design the MEngSc Biopharmaceutical Engineering
- Timber and Harbours: Insights into Sustainability in Design and Construction
- Ministers Humphreys and Halligan announce six finalists competing for €1 million SFI Future Innovator Prize
- Congratulations to Amanda Gibney and Michael Bruen on their fellowships!
- Mechanical Engineering Lecturer is Keynote Speaker at UCD Annual Teaching and Learning Conference
- Optimising the Last Mile of 5G Wireless Networks
- A Living Lab Approach for more Sustainable Cities
- Sanofi Future Female Leader Scholarships awarded to two UCD students
- Controlling Moving and Shaking for Better Space Travel and Horse Training
- Professor Sheila O’Donnell becomes first Irish architect inducted into American Academy of Arts and Letters
- Ministers announce the nomination of Professor Peter Clinch as Chairperson Designate of the Board of Science Foundation Ireland
- Seven Review Papers by Professor Da-Wen Sun Published in Critical Reviews in Food Science and Nutrition
- Accounting for Environmental Impact in the Bioeconomy
- Study by University College Dublin Reveals Toyota Hybrids Drive Over 60% of the Time in Zero Emissions Mode
- New Perspectives on River Models
- Engineering design to solve long-term problems in energy storage and medicine
- An innovative program called TRUSS aims to protect Europe’s infrastructure for decades to come
- A Boost for Wireless and Energy-Harvesting Technologies
- UCD Professor of Planning, Mark Scott, launches a major new book on rural planning
- Towards Mass Production for Precision Micro/Nano Devices
- Assessing the Internal Health of Earthworks for more Stable Infrastructure
- Research to improve welding process for manufacturing industries
- SFI Starting Investigator Research Grants for three UCD academics
- Dual BE with Chang'an University
- UCD academics named as two of Ireland’s five new Cultural Ambassadors
- Engineering Solutions to Offset Waste Problems
- Chemical giant DuPont acquires UCD spin-out OxyMem
- 2018 News Archive
- 2017 News Archive
- 2016 News Archive
- Building the State
- A Centenary Celebration
Research to improve welding and 3D printing processes for manufacturing industries
Friday, 18 January, 2019
Image copyright belongs to Aucott, L., Dong, H.B., Mirihanage, W.U., Atwood, R.C., Kidess, A., Gao, S., Wen, S.W., Marsden, J.A., Feng, S., Tong, M., Connolley, T., Drakopoulos, M., Kleijn, C.R., Richardson, I.M, , Browne, D.J., Mathiesen, R.H., Atkinson, H.V.
New research, led by the University of Leicester, will optimise the welding and additive manufacturing process Arc welding and additive manufacturing are hugely important for creating large metal components relatively inexpensively and quickly.
New research led by Professor Hongbiao Dong from the University of Leicester’s Department of Engineering has shown how to optimise this process to improve efficiency and cost. The research, which was a collaboration between the University of Leicester, Delft University of Technology, Diamond Light Source, University College Dublin and TATA Steel Research UK was recently published in Nature Communications.
It explores the internal flow behaviour in additive manufacturing of metals and arc welding – the most widely used welding process in modern manufacturing.
The work focused on examining the melt pools that are created during the welding process.
To do this, the team inserted small tungsten and tantalum particles into the melt pool. Due to their high melting points, the particles remained solid in the melt pool long enough for them to be tracked using intense beams of X-rays.
The X-rays were generated using the synchrotron particle accelerator at Diamond Light Source, which is the UK’s National facility for synchrotron light. Beamline I12 was selected for this research due to its specialised high energy, high-speed imaging capability at thousands of frames per second.
Using Beamline I12, the researchers were able to create high-speed movies showing how surface tension affects the shape of the welding melt pool and its associated speed and patterns of flow. The results showed, for the first time, that the melt flow behaviour is similar to that previously only seen via computer simulations.
The results revealed that arc welding can be optimised by controlling the flow of the melt pool and changing the associated active elements on the surface.
Professor Dong said: “Understanding what happens to the liquid in melt pools during welding and metal-based additive manufacturing remains a challenge. The findings will help us design and optimise the welding and additive manufacturing processes to make components with improved properties at a reduced cost.
Welding is the most economical and effective way to join metals permanently, and is a vital component of our manufacturing economy.”
Dr Thomas Connolley, Principal Beamline Scientist for I12 at Diamond Light Source commented: “The I12 team was closely involved in the experiment. The beamline was designed with these challenging in-situ experiments in mind and I am very happy that we have helped advance understanding of additive manufacturing and welding, given their technological importance.”
It is estimated that over 50% of global domestic and engineering products contain welded joints. In Europe, the welding industry has traditionally supported a diverse set of companies across the shipbuilding, pipeline, automotive, aerospace, defence and construction sectors. Revenue from welding equipment and consumable markets reached €3.5 billion in Europe in 2017.
The UCD co-authors are Prof. David Browne and Dr Mingming Tong (now at NUI Galway) of the School of Mechanical and Materials Engineering. The European research collaboration was established during the project “MintWeld” (Modelling of Interface Evolution in Advanced Welding) which was funded by the European Commission under the FP7 programme for research. Prof. Browne’s Phase Transformation Research Group concentrates on alloy solidification, and he explains: “We started here at UCD studying alloy solidification in casting process, and then extended this to welding and joining processes within the MintWeld project. This involved investigations into both melting and subsequent solidification in multi-pass welding. This extended scope of our research is the subject matter of this Nature Communications paper . The multiple passes of melting and solidification are also relevant to 3D printing (a.k.a. Additive Manufacturing) in metals, and now my group is studying these phenomena as part of the new SFI Advanced Manufacturing Research Centre, based at UCD, known as I-Form . We are applying our findings on casting and welding to the 3D printing of alloys, which involves selective melting, by a laser or electron beam, of a bed of loose powders, layer by layer. We are adapting our computer modelling techniques to simulate the melting and subsequent evolution of grain and micro structure as the alloy solidifies, causing the powder particles to fuse together. Our industry partners are particularly interested in these investigations, as this resultant microstructure determines the properties of the printed parts.”
The results will help with the future designing and optimisation of the welding and additive manufacturing process, and will have an important and far-reaching impact.
ENDS
The paper can be found in Nature Communications.
About Diamond Light Source: www.diamond.ac.uk Diamond Light Source is the UK’s synchrotron science facility. Shaped like a huge ring, it works like a giant microscope, harnessing the power of electrons to produce bright light that scientists can use to study anything from fossils to jet engines to viruses and vaccines. Diamond speeds up electrons to near light speeds, producing a light 10 billion times brighter than the Sun, which is then directed off into 33 laboratories known as ‘beamlines’.
Each year thousands of scientists use the UK’s synchrotron and its integrated facilities (eBIC, ePSIC etc.), with 57% visiting and 43% accessing the facility remotely. Diamond’s state-of-the-art facilities and world-class people act as agents of change, addressing 21st century challenges such as disease, clean energy and food security. Diamond research supports new medicines, technologies and advances of all kinds. More than 7,000 papers have been published because of research conducted at the facility.
To find out more about the I12 beamline, or to discuss potential applications, please contact Principal Beamline Scientist Thomas Connolley: thomas.connolley@diamond.ac.uk